备战蓝桥杯D33 - 真题 - 松散子序列

题目描述

 解题思路

ps:思路是我看了大佬的题解后自己的理解,自己给自己捋清楚思路。

1.设置输入,将字符串输入

2.因为输入的是字符,但要找出字符的最大价值,所以先将字符串转化成对应的数值。

这时候就要用到ord函数,这个函数用于返回表示给定字符的Unicode代码点的整数。就是把字符转成ASCII码。小写字母 a 从 97 开始,要想让 a 的数值是 1,就要对96取余,得到结果就是1,后面的字符同理,这样就能得到字母 a ~ z 对应的数值是1 ~ 26。把字符转换成数字后存到 s_list[ ]列表中。

3.定义我们要得到的子序列的数值 t[ ], 长度为 len(s) + 1 ,因为条件说 pi- pi-1>2,所以循环时要从1开始才能保证这个条件成立,如果 t [ ]列表长度不加 1 数据会越界。先把列表中的数值都设置为0,在后续的循环中我们进行相加比较后再进行重新赋值修改。

4.开始 for 循环:

        循环变量 i 从1 开始:就先把 s 字符的第一个字符对应的数值添加进 t [ 1 ]。

        i > 1时:将 s_list[i-1]+t[i-2] t[i-1] 进行比较,找出较大的值,添加到 t[ i ] 中。

如图所示,将数值加起来就就是该字符串对应的子串,通过数值不断地相加,找出最大的数值。

我看的那个大佬的代码多写了一种 i == 2时的情况,其实也可以不写,因为 t[0] = 0,最后是s_list[0]s_list[1]比较,都一样。 

我已经尽可能的说明白这个过程了,还是自己根据题目给出的例子自己动手算一算,这样会对动态规划的理解更深刻一些。

代码实现

s = input()
s_list = [ord(i) % 96 for i in s]
# for i in s:   # 这三行代码直接用上面的列表推导式实现了
#     m = ord(i) % 96   # 对简化代码非常有帮助
#     s_list.append(m)
t = [0 for j in range(len(s)+1)]
for i in range(1, len(s)+1):
    if i == 1:
        t[i] = s_list[0]
    # elif i == 2:   # 这种i==2的情况可写可不写,因为else中也包含了第二种情况
    #     t[i] = max(s_list[1], s_list[0])
    else:
        t[i] = max(s_list[i-1]+t[i-2], t[i-1])

print(t[-1])

最后实现的代码也是很简单的,我们自己思考也是很简单的,一看就能看出来三个z组成的子串对应的数值最大,难的就是将人的思维转化成代码,告诉机器应该怎么思考怎么算。在学习算法的时候真的需要多思考,多动手。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/472782.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

中国(京津冀)太阳能光伏展

中国(京津冀)太阳能光伏展是一场关于太阳能光伏技术和产业的展览会,主要在中国的京津冀地区举办。该展览会旨在推动太阳能光伏产业的发展,促进技术交流和商业合作。 在中国,太阳能光伏产业一直是重点发展的领域之一。中国政府制定了一系列政策…

水电能源智能化监控系统

水电能源智能化监控系统是利用现代信息技术,对水电站的运行状态、设备性能、环境参数等进行实时监测和管理的一种智能化系统。随着我国水电能源事业的快速发展,水电能源智能化监控系统在水电能源行业中的应用越来越广泛,为我国水电能源事业的…

【Qt学习笔记】(六)界面优化

界面优化 1 QSS1.1 背景介绍1.2 基本语法1.3 QSS设置方式1.3.1 指定控件样式设计1.3.2 全局样式设置1.3.3 使用 Qt Designer 编辑样式 1.4 选择器1.4.1选择器概况1.4.2 子控件选择器(Sub-Controls)1.4.3伪类选择器(Pseudo-States) 1.5 样式属性1.5.1 盒模…

[C++]20:unorderedset和unorderedmap结构和封装。

unorderedset和unorderedmap结构和封装 一.哈希表&#xff1a;1.直接定址法&#xff1a;2.闭散列的开放定址法&#xff1a;1.基本结构&#xff1a;2.insert3.find4.erase5.补充&#xff1a;6.pair<k,v> k的数据类型&#xff1a; 3.开散列的拉链法/哈希桶&#xff1a;1.基…

PyTorch 深度学习(GPT 重译)(四)

第二部分&#xff1a;从现实世界的图像中学习&#xff1a;肺癌的早期检测 第 2 部分的结构与第 1 部分不同&#xff1b;它几乎是一本书中的一本书。我们将以几章的篇幅深入探讨一个单一用例&#xff0c;从第 1 部分学到的基本构建模块开始&#xff0c;构建一个比我们迄今为止看…

图书馆RFID(射频识别)数据模型压缩/解压缩算法实现小工具

1. 前言 最近闲来无聊&#xff0c;看了一下《图书馆射频识别数据模型第1部分&#xff1a;数据元素的设置及应用规则》以及《图书馆射频识别数据模型第2部分&#xff1a;基于ISO/IEC 15962的数据元素编码方案》&#xff0c;决定根据上面的编码方法实现一下该算法&#xff0c;于…

算法沉淀——贪心算法四(leetcode真题剖析)

算法沉淀——贪心算法四 01.最长回文串02.增减字符串匹配03.分发饼干04.最优除法 01.最长回文串 题目链接&#xff1a;https://leetcode.cn/problems/longest-palindrome/ 给定一个包含大写字母和小写字母的字符串 s &#xff0c;返回 通过这些字母构造成的 最长的回文串 。 …

【软件测试】如何设计自动化测试脚本

企业中如何设计自动化测试脚本呢&#xff1f;今天我们就来为大家分享一些干货。 一、线性设计 线性脚本设计方式是以脚本的方式体现测试用例&#xff0c;是一种非结构化的编码方式&#xff0c;多数采用录制回放的方式&#xff0c;测试工程师通过录制回访的访问对被测系统进行…

在ComfyUI中,IP-Adapter的一大堆模型应该怎么放?

&#x1f381;背景介绍 IP-Adapter有一大堆的模型&#xff0c;那么这个模型在ComfyUI中&#xff0c;这些模型到底应该怎么放呢&#xff1f;这篇文章简单介绍一下。 首先&#xff0c;大家需要到huggingface上找到对应的模型&#xff0c;把所有的模型先下载下来。 huggingface…

vue2 项目认识 vue2 各个文件夹作用 vue工程文件作用 main.js是什么 package.json是什么

1. node_modules : 项目依赖文件夹&#xff0c;相当于java类库。依赖包 2. public 文件夹: 一般放置一些静态资源&#xff08;图片&#xff09;&#xff0c;注意&#xff1a; 放在public文件夹内的文件&#xff0c;webpack打包时候&#xff0c;会原封不动打包到dist文件夹中 …

隐私计算实训营学习二:隐私计算开源如何助力数据要素流通

文章目录 一、数据要素流转与数据内外循环二、数据外循环中的信任焦虑三、数据要素流通对隐私计算的期望四、隐私计算开源助力数据要素流通 一、数据要素流转与数据内外循环 数据要素流转过程(从数据采集加工->到数据价值释放)&#xff1a; 链路主要包括采集、存储、加工、…

Pandas-排序函数sort_values()

Pandas-排序函数sort_values() pandas中的sort_values()函数原理类似于SQL中的order by&#xff0c;可以将数据集依照某个字段中的数据进行排序&#xff0c;该函数即可根据指定列数据也可根据指定行的数据排序。 pandas中的sort_values()函数原理类似于SQL中的order by&#xf…

RR级别为什么不能完全解决幻读案例分析 | 什么是MCVV

0. 知识前要&#xff1a;1. 举个栗子&#xff1a;1.1. 栗子一&#xff1a;两次快照读之间存在更新语句&#xff0c;更新其他事务已经更新过的数据1.1.1. 执行过程分析&#xff1a;1.1.2. MVCC分析&#xff1a; 1.2. 栗子二&#xff1a;两次快照读之间存在更新语句&#xff0c;更…

LightDB24.1 存储过程支持inner和outer对变量的引用

背景 Oracle oracle plsql支持如下场景&#xff1a; 在for循环中&#xff0c;将select查询的结果给一个record类型&#xff0c;这一操作也被称为隐式游标操作。record类型中一个字段用来接收查询结果中的一个select查询语句&#xff08;update,delete,insert在这个语法中都会…

CentOS安装zsh与ohmyzsh

文章目录 安装 zsh安装 ohmyzsh安装插件.zshrc 配置终端效果 安装 zsh yum install -y git curl # 安装zsh yum install -y zsh # 查看已经安装shell cat /etc/shells # 切换shell chsh -s /bin/zsh安装 ohmyzsh 国内镜像 sh -c "$(curl -fsSL https://gitee.com/pocmo…

算法·动态规划Dynamic Programming

很多人听到动态规划或者什么dp数组了&#xff0c;或者是做到一道关于动态规划的题目时&#xff0c;就会有一种他很难且不好解决的恐惧心理&#xff0c;但是如果我们从基础的题目开始深入挖掘动规思想&#xff0c;在后边遇到动态规划的难题时就迎难而解了。  其实不然&#xff…

数据结构与算法3-选择排序

文章目录 1. 认识选择排序2. 图示2.1 图示12.2 图示2 3. 代码 1. 认识选择排序 双层for循环&#xff0c;每次选出最小的数放到i位置&#xff0c;时间复杂度O( n 2 n^2 n2)&#xff0c;空间复杂度O(1);从未排序的序列中找到最小&#xff08;或最大&#xff09;的元素&#xff0…

【CNN轻量化】ParameterNet: Parameters Are All You Need 参数就是你所需要的

论文链接&#xff1a;http://arxiv.org/abs/2306.14525 代码链接&#xff1a;https://github.com/huawei-noah/Efficient-AI-Backbones 一、摘要 现有的低FLOPs模型&#xff08;轻量化模型&#xff09;无法从大规模预训练中受益。本文旨在增加大规模视觉预训练模型中的参数数量…

程序员的最佳副业居然是炒股

前言 之前的文章 《程序员的最佳副业居然是这个》讲述了个人的副业选择&#xff0c;和各种做过的副业。最后选择了炒股。那么究竟是否能够在股市里赚到利润呢&#xff1f;以我个人最近的交易记录来看&#xff0c;答案是肯定的。 一个半月赚取了 2898 程序员投资的优势 程序…

netty基础_12.用 Netty 自己实现简单的RPC

用 Netty 自己实现简单的RPC RPC 基本介绍我们的RPC 调用流程图己实现 Dubbo RPC&#xff08;基于 Netty&#xff09;需求说明设计说明代码封装的RPCNettyServerNettyServerHandlerNettyClientHandlerNettyClient 接口服务端(provider)HelloServiceImplServerBootstrap 客户端(…