【机器学习】TinyML的介绍以及在运动健康领域的应用

🧑 作者简介:阿里巴巴嵌入式技术专家,深耕嵌入式+人工智能领域,具备多年的嵌入式硬件产品研发管理经验。

📒 博客介绍:分享嵌入式开发领域的相关知识、经验、思考和感悟,欢迎关注。提供嵌入式方向的学习指导、简历面试辅导、技术架构设计优化、开发外包等服务,有需要可私信联系。

🗄️ 专栏介绍:本文归属于专栏《嵌入式解决方案》,专注嵌入式开发中的解决方案,持续更新中,欢迎大家免费订阅关注。

TinyML的介绍以及在运动健康领域的应用

  • 1. 机器学习是什么解决什么问题?
    • 1.1 机器学习是什么?
    • 1.2 解决什么问题?
    • 1.3 有什么解决方案?
  • 2. TinyML简介
    • 2.1 什么是TinyML
    • 2.2 TinyML优势和局限
      • 2.2.1 TinyML的优势
      • 2.2.2 TinyML的局限
    • 2.3 TinyML为什么可以做得很小
      • 2.3.1 Quantization(模型量化)
      • 2.3.2 Weight Pruning(权重稀疏)
      • 2.3.3 Knowledge Distillation (知识蒸馏)
    • 2.4 TinyML核心组件
  • 3. TinyML Workflow
    • 3.1 TinyML模型选择
    • 3.2 TinyML模型转换
    • 3.3 TinyML模型性能评估和优化
  • 4. TinyML应用场景
  • 5. TinyML在运动健康领域的实践
    • 5.1 运动健康领域的应用场景
    • 5.2 实践操作步骤
      • 5.2.1 运动数据/姿态数据采集
      • 5.2.2 运动模型训练
      • 5.2.3 模型训练结果分析
      • 5.2.4 TinyML在嵌入式芯片上的移植应用
  • 6. 总结

1. 机器学习是什么解决什么问题?

1.1 机器学习是什么?

  • 涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。
  • 深度学习是机器学习领域中的一个研究方向。

1.2 解决什么问题?

  • 分类问题:图像识别,分类,垃圾邮件识别等
  • 回归问题:根据数据样本的特征,预测一个连续值的结果,例如股票预测,销量预测,图像分割。
  • 聚类问题(无监督学习):新闻分类

1.3 有什么解决方案?

  • DNN(Deep Neural Network)深度神经网络
  • CNN(Convolutional Neural Network)卷积神经网络,处理图像分类,特征提取
  • RNN(Recurrent Neural Network)循环神经网络,处理自然语言,语音数据,手势姿态等
    在这里插入图片描述

2. TinyML简介

2.1 什么是TinyML

在这里插入图片描述

随着深度学习技术的发展,已有数种深度学习框架,例如TensorFlow、Caffe、Caffe2、Theano、Torch、MXNet和CNTK,支持卷积神经网络、递归神经网络等模型结构。

其中,TensorFlow由Google Brain团队的研究员和工程师研发,已成为业界最受欢迎的机器学习项目。TensorFlow框架的优秀特性,主要包括:

  • 支持异构设备的分布式计算,可有效地利用机器资源进行模型训练。
  • 支持卷积、循环神经等网络结构,这些都是在计算机视觉、语音识别、自然语言处理方面最流行的深度神经网络。
  • 支持模型从研究团队到生产环境的快速迁移,构建起模型研究到生产使用的桥梁。
  • 支持移动端开发,及智能终端产品的嵌入式开发。
  • 具备出色的版本管理和详细的官方文档,模型众多,生态系统比较完备。

而TensorFlow Lite 是 TensorFlow 的轻量级版本,专为移动和嵌入式设备设计。它优化了模型的大小和运行效率,使得深度学习模型可以在资源有限的设备上运行,如智能手机、平板电脑和IoT设备。TFLite 允许开发者将训练好的TensorFlow模型转换为一个优化的格式,以便在这些设备上实时运行。

TinyML(Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers(基于Arduino和超低功耗微控制器的TensorFlow Lite机器学习))是指在极低功耗的微控制器和其他小型计算设备上运行的机器学习应用。这通常涉及到将已经训练好的机器学习模型压缩和优化,以使其适应更小的内存和处理能力。TinyML 的目标是在这些设备上实现AI功能,同时保持低能耗和低成本。虽然TinyML不是一个具体的产品或库,但TensorFlow Lite for Microcontrollers(一个TFLite的分支)是专门针对微控制器优化的,常被用在TinyML项目中。

2.2 TinyML优势和局限

2.2.1 TinyML的优势

在这里插入图片描述

  • 模型精简,低算力,低功耗
  • 数据不上云,本地处理,对数据隐私有保护作用
  • 数据本地处理,不上云,反应及时,低时延
  • 模型精简,模型体积比较小,适用大多数微处理器
  • 在保证模型体积小的基础上,能够满足精度需求

2.2.2 TinyML的局限

由于MCU性能有限,所以TinyML的应用领域、性能、效率方面相比TensorFlow是有一定局限性的,比如:

应用领域微控制器上的TinyML服务器上的TensorFlow
异常检测能,模型尺寸有限能,大模型
图像识别能,分辨率和实时性不强能,分辨率和实时性不强
语音识别仅能识别唤醒词/命令词全自然语言处理

2.3 TinyML为什么可以做得很小

TensorFlow为了能够运行到微控制上,主要做了下面3方面的优化:

  • Quantization 模型量化,减小模型体积,提高运行速度
  • Weight Pruning 剪枝,减少神经元,减少通道数
  • Knowledge Distillation 知识蒸馏,知识迁移

2.3.1 Quantization(模型量化)

在这里插入图片描述
模型量化即以较低的推理精度损失将连续取值(或者大量可能的离散取值)的浮点型模型权重或流经模型的张量数据定点近似(通常为int8)为有限多个(或较少的)离散值的过程,它是以更少位数的数据类型用于近似表示32位有限范围浮点型数据的过程,而模型的输入输出依然是浮点型,从而达到减少模型尺寸大小、减少模型内存消耗及加快模型推理速度等目标。

主要目的:把float类型转化为int型,降低模型内存大小

量化参数: DEFAULT, OPTIMIZE_FOR_SIZE, OPTIMIZE_FOR_LATENCY

2.3.2 Weight Pruning(权重稀疏)

在这里插入图片描述
模型剪枝可以帮助使模型的表示更紧凑。从广义上讲,剪枝试图去除对输出预测没有多大用处的神经元。

这通常与较小的神经权重相关联,而较大的权重由于在推理过程中的重要性而保持不变。

然后在剪枝后的体系结构上重新训练网络,以微调输出。
主要手段:通道剪枝,神经元剪枝

2.3.3 Knowledge Distillation (知识蒸馏)

在这里插入图片描述
“Teacher”是一个经过训练的神经网络模型。教师的任务是将其“知识”转移到参数较少的较小网络模型“student”。

该过程用于将相同的知识存储在较小的网络中,提供了一种压缩知识表示的方法,从而压缩了神经网络的大小,从而可以将其用于更多内存受限的设备上。

2.4 TinyML核心组件

在这里插入图片描述

  • Converter

    1. 将TF模型转化为TFLite模型
    2. 减少模型体积,保持模型精度。
  • Interpreter

    1. 支持多系统
    2. 透出标准API
    3. 解析TFLite模型

3. TinyML Workflow

在这里插入图片描述

3.1 TinyML模型选择

  • 预训练模型
    • 图像分类
    • 物体检测
    • 智能回复
    • 姿态估计
    • 语义分割
  • 重新训练模型
    • 迁移学习
    • 重新训练已有模型
  • 自训练模型
    • 自主化训练

3.2 TinyML模型转换

在这里插入图片描述

3.3 TinyML模型性能评估和优化

在这里插入图片描述

  • TinyML性能评估
    模型进行性能分析和基准测试。TensorFlow Lite 基准测试工具有内置的性能分析器,可展示每个算子的性能分析数据。这能帮助理解性能瓶颈,以及哪些算子占据了大部分计算时间。

  • TinyML模型优化
    Tensorflow提供了优化工具包,主要是通过模型量化,剪枝,聚类的方式进行优化。

4. TinyML应用场景

  • 语音识别类

    • 唤醒词/命令词识别:唤醒词训练和识别
    • 哭声检测:
  • 运动健康类

    • 运动检测:羽毛球,足球,游泳等运动模式检测
    • 健康监控:心率,血氧,呼吸统计,饮水提醒,久坐提醒
    • 疾病防治:监控血糖,自动释放胰岛素
  • 物体识别类

    • 物体识别:野生环境生物识别
    • 人脸识别:统计人流量
  • 农业,智慧城市

    • 精细化灌溉,施肥,病虫害防治,城市环境,空气质量监控等

5. TinyML在运动健康领域的实践

5.1 运动健康领域的应用场景

在这里插入图片描述

  • 健康监控
    识别低头,抬头,运动动作,并统计时间,对健康数据进行统计展示,为健康建议提供数据。
  • 久坐提醒
    统计久坐时长,统计时长,在1个小时时间内,低头时间超过40分钟,发送健康提醒。
  • 接听/挂断电话
    当电话接入时,收到广播,开始进行点头和摇头动作识别,识别导点头,接听电话,识别导摇头,挂断电话。
  • 运动健康训练
    识别点头,抬头,颈部左移动,颈部右移动动作。统计次数,完成运动指标。

5.2 实践操作步骤

在这里插入图片描述

5.2.1 运动数据/姿态数据采集

通过特定应用程序,在设备端数据采集,并保存为csv文件
在这里插入图片描述
在这里插入图片描述

5.2.2 运动模型训练

运动模型训练工具是在线训练,利用已有的训练模型,上传本地采集的数据进行训练。训练工具地址:https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/audio/simple_audio.ipynb
,数据训练集:
http://download.tensorflow.org/models/tflite/magic_wand/data.tar.gz。
在这里插入图片描述

5.2.3 模型训练结果分析

  • 训练结果符合预期
    在这里插入图片描述在这里插入图片描述

  • 训练结果不符合预期

在这里插入图片描述
在这里插入图片描述

5.2.4 TinyML在嵌入式芯片上的移植应用

  • 代码下载
    https://github.com/tensorflow/tflite-micro.git
    下载tflite-micro 仓库代码
  • 代码编译
    • Toolchain指定
      在cortex_m_generic_makefile.inc 中指定编译器的路径
    • 编译
      make -f tensorflow/lite/micro/tools/make/Makefile TARGET=cortex_m_generic TOOLCHAIN=gcc TARGET_ARCH=cortex-m33
    • 产物
      libtensorflow-microlite.a
  • 训练生成物
    20K大小的模型model.cc (xxd -i model.tflite > /content/model.cc)
  • 实际运行
    模型替换,代码添加到工程,调用入口函数,执行。

6. 总结

随着TinyML技术的不断演进和成熟,我们见证了其在运动健康领域中潜力的全面释放。通过在可穿戴设备和嵌入式系统中集成微型机器学习模型,运动健康应用能够在不牺牲精度和反应速度的前提下,实现更低的能耗和更高的可访问性。

随着技术的不断进步和创新,我们期待TinyML能够帮助更多的人实现健康管理的自我赋能,同时为运动健康产业带来更加智能化和个性化的服务。无疑,TinyML在推动健康科技进步的道路上,将扮演着越来越重要的角色。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/471996.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

大华 DSS 数字监控系统 attachment_clearTempFile.action SQL注入漏洞复现

0x01 产品简介 大华 DSS 数字监控系统是大华开发的一款安防视频监控系统,拥有实时监视、云台操作、录像回放、报警处理、设备管理等功能。 0x02 漏洞概述 大华 DSS存在SQL注入漏洞,攻击者 向 attachment_clearTempFile.action 路由发送特殊构造的数据包,利用报错注入获取…

peft模型微调_IA3

IA3(论文:Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning),通过学习向量来对激活层加权进行缩放,从而获得更强的性能,同时仅引入相对少量的新参数,如下图左边所示,它的诞生背景是为了改进 LoRA。 为了使微调更有效,IA3(通…

QQ聊天的快捷回复怎么设置?

在快节奏的商务环境中,每一秒都至关重要。对于在线客服而言,快速而准确地回应客户咨询可以显著提升服务质量和客户满意度。如果你在使用QQ进行客户服务工作,需要更快捷回复客户信息,可以设置快捷回复,那我们就来看看怎…

演讲恐惧症?别怕!这3招帮你克服舞台紧张

演讲恐惧症?别怕!这3招帮你克服舞台紧张 在人生的舞台上,演讲往往被视为展现个人才华、传递思想观点的重要平台。然而,对于许多人来说,站在舞台上却成为了一种难以克服的恐惧。演讲恐惧症,这个看似微不足道…

【动态规划】算法例题

目录 一维动态规划: 137. 爬楼梯 ① 138. 打家劫舍 ② 139. 单词拆分 ② 140. 零钱兑换 ② 141. 最长递增子序列 ② 多维动态规划: 142. 三角形最小路径和 ② 143. 最小路径和 ② 144. 不同路径 II ② 145. 最长回文子串 ② 146. 交错字符串…

7.安全性基础知识

主要议题: 安全防护体系:7层次,要记7层次的名称以及这些层次与哪些方面相关; 安全保护等级:5等级,要记5等级安全性的高低排序,掌握每个等级的特点; 用户认证机制:用户认…

JAVA学习日记十二(File类与IO流)

1.File类的使用 一个File对象代表硬盘或网络中可能存在的一个文件或者文件目录(俗称文件夹),与平台无关。(体会万事万物皆对象) File 能新建、删除、重命名文件和目录,但 File 不能访问文件内容本身。如果…

OSPF路由汇总

OSPF只要是环回接口(默认P2P网络类型),默认都是32位的叶子信息。手动修改,[R1-LoopBack0]ospf network-type broadcast;修改网络类型。 OSPF不支持自动汇总,需要手动汇总。 一、OSPF路由汇总 使用CIDR技术…

2024 用CleanMyMac X为您的MAC清理提速吧

CleanMyMac X 是由 MacPaw 公司开发的一款针对 macOS 操作系统的电脑清理工具。它可以帮助用户清理电脑中的垃圾文件、卸载不需要的软件、优化电脑性能等。它的界面简洁明了,操作简单易懂,非常适合普通用户使用。 链接: https://pan.baidu.com/s/1_TFnrI…

Redis数据结构对象中的类型检查与命令多态、内存回收

类型检查与命令多态 概述 redis中用于操作键的命令基本上可以分为两种类型。其中一种命令可以对任何类型的键执行,比如说DEL命令、EXPIRE命令、RENAME命令、TYPE命令、OBJECT命令等. 而另一种命令只能对特定类型的键执行,比如说 1.SET、GET、APPEND、…

1688无货源一件代发怎么做?附详细流程图!

大家喜欢在1688上做一件代发,因为1688拥有庞大的供应商资源,商家可以轻易找到优质、低价的产品。其次,平台信誉度高,交易安全可靠,1688还提供了一系列便捷的服务和工具,帮助商家高效管理订单、物流&#xf…

vulnhub-----SickOS靶机

文章目录 1.信息收集2.curl命令反弹shell提权利用POC 1.信息收集 ┌──(root㉿kali)-[~/kali/vulnhub/sockos] └─# arp-scan -l Interface: eth0, type: EN10MB, MAC: 00:0c:29:10:3c:9b, IPv4: 10.10.10.10 Starting arp-scan 1.9.8 with 256…

小米汽车定价较预期下调3万至5万,发布之前仍有可能微调

跨界造车的新势力小米汽车正逐渐揭开其神秘面纱。最新爆料显示,小米汽车内部对车辆的定价进行了讨论,较之前的预期下调了3万至5万的幅度。然而,在正式发布之前,这一价格仍有可能进行微调。 历经三年的精心筹备,小米汽车…

用Python的turtle库绘制皮卡丘

turtle库的简介 turtle(海龟)库是turtle绘图体系的python实现,turtle库是一种标准库,是python自带的。 turtle(海龟)是一种真实的存在,有一个海龟在窗口的正中心,在画布上游走,走过的轨迹形成了绘制的图形&#xff0…

vr虚拟现实游戏世界介绍|数字文化展览|VR元宇宙文旅

虚拟现实(VR)游戏世界是一种通过虚拟现实技术创建的沉浸式游戏体验,玩家可以穿上VR头显,仿佛置身于游戏中的虚拟世界中。这种技术让玩家能够全方位、身临其境地体验游戏,与游戏中的环境、角色和物体互动。 在虚拟现实游…

如何快速搭建一个完整的vue2+element-ui的项目-二

技术细节-继续配置 提示:你以为这样就完了吗,其实还有很多东西需要我们自己手写的 例如: element-ui的配置样式重置配置src使用的配置elinst配置axios异步请求的二次封转配置语言国际化配置(这个看需求,我这里就不用配置了)vuex的配置mixins的配置开发环…

2万多个手机壁纸电脑壁纸图片ACCESS\EXCEL数据库

图片类的大数据我记得有《4万多论坛头像个性头像》、《近3万个斗图头像图片大全》、《近5000张趣图有趣GIF动画图》、《8千多JPG趣图内涵段子图》,但是比起今天的壁纸大全数据库来说,容量方面又不是很大,今天搞到的手机静态壁纸虽然记录数才2…

FreeRtos中段管理-----参考正点原子

什麽是中断? 让CPU打断正常运行的程序,转而去处理紧急的事件(程序),就叫中断 中断执行机制,可简单概括为三步: 1,中断请求:外设产生中断请求(GPIO外部中断、定…

基于springboot+vue的社区养老服务系统

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战,欢迎高校老师\讲师\同行交流合作 ​主要内容:毕业设计(Javaweb项目|小程序|Pyt…

常用负载均衡详解

一、介绍 在互联网场景下,负载均衡(Load Balance)是分布式系统架构设计中必须考虑的一个环节,它通常是指将负载流量(工作任务、访问请求)平衡、分摊到多个操作单元(服务器、组件)上去…