【5G NB-IoT NTN】3GPP R17 NB-IoT NTN介绍

博主未授权任何人或组织机构转载博主任何原创文章,感谢各位对原创的支持!
博主链接

本人就职于国际知名终端厂商,负责modem芯片研发。
在5G早期负责终端数据业务层、核心网相关的开发工作,目前牵头6G算力网络技术标准研究。


博客内容主要围绕:
       5G/6G协议讲解
       算力网络讲解(云计算,边缘计算,端计算)
       高级C语言讲解
       Rust语言讲解



文章目录

  • 3GPP R17 NB-IoT NTN介绍
    • 一、NB-IoT NTN 架构
    • 二、物理层改动
    • 三、高层修改
    • 四、基于NTN的NB-IoT优势有哪些
      • 4.1 更好的覆盖和连接
      • 4.2 支持更大范围的应用程序
      • 4.3 更长的电池寿命
      • 4.4 全球可用性
      • 4.5 实现新的和创新的解决方案
    • 五、性能分析
    • 六、技术挑战
  • 总结
  • 参考

3GPP R17 NB-IoT NTN介绍


一、NB-IoT NTN 架构

       在3GPP R17协议中,将NB-IoT集成到了NTN(非陆地网络,即卫星通信)中,并定义了一个系统架构。在这个架构中包括一个可配置再生payload的低轨道(LEO)卫星,这意味着该卫星可以执行传统基站的全部或部分功能。该系统架构还可以适配同步轨道(GEO)卫星,这些卫星与LEO卫星类似,也可以配置再生payload。

系统高度范围轨道波束覆盖范围
LEO300~1500km绕地球转100~1000km
GEO35786km与地球自转同步200~3500km

       卫星在其覆盖区域产生若干点波束以增加其容量。这些点波束随卫星移动,每个点波束的大小取决于仰角和卫星配置。

在这里插入图片描述


二、物理层改动

       NB-IoT支持450~2690 MHz的LTE频段,包括频分双工(FDD)和时分双工(TDD)模式。为使设计影响最小化,可以将对NTN的支持限制在现有的LTE频率范围内(约6 GHz),优先考虑FDD频段,因为在具有大往返时间(RTT)的NTN中支持TDD存在挑战

       在NTN中,与地面NB-IoT中典型的120公里小区半径相比,由于更大的波束半径和基站链路距离,时间至关重要。这会影响时间和频率调整机制,如定时提前(TA)和上行链路频率补偿指示。

       通过全球导航卫星系统(GNSS)可以解决这些问题。例如,配备GNSS的设备可以在随机接入之前对RTT进行估计和预补偿,使基站接收机只处理很小的剩余定时误差。


三、高层修改

       为了实现许多NB-IoT设备的低功耗运行,基于估计的服务链路传播时延和地理距离的小区选择和重选至关重要。网络的最大RTT和SNR是关键考虑因素。

       因为覆盖范围扩大了,因此MAC、RLC、PDCP和RRC层中的定时器也需要调整。NTN中有3个定时器需要优化:

  • MAC竞争解决定时器;
  • MAC HARQ RTT定时器;
  • RLC 重排序定时器;

       NB-IoT支持两个HARQ进程,但由于接收端复杂度增加,增加HARQ进程数量是不可行的。一种增强方案是禁用HARQ,让RLC自动重传请求(ARQ)管理重传。

       最后,RRC层的广播信令需要更新为NTN特有的信息,包括卫星位置、最大RTT和每个小区的地理中心点。


四、基于NTN的NB-IoT优势有哪些

       NB-IoT与NTN的集成带来了许多好处,超出了卫星和地面网络的传统用例。这种整合将彻底改变我们的沟通方式,特别是在偏远和难以到达的地区。

4.1 更好的覆盖和连接

       与NTN相比,NB-IoT最显著的优势之一是提供更好的覆盖能力。这种技术可以覆盖到世界上人口稀少的偏远地区,而在这些地区部署地面网络的成本非常的高。它还可以覆盖飞机、远洋船舶和长途火车路线。因此,基于NTN的NB-IoT可以提供真正的全球连接,弥合地面和卫星通信之间的差距。

4.2 支持更大范围的应用程序

       基于NTN的NB-IoT不限于物联网应用。最近的发展表明,NB-IoT还可以支持其它功能,如文本、语音通信和多播固件更新。从偏远地区的应急服务到汽车和海上风力发电场的自动软件更新,这种多功能性带来了更多潜在的应用。

4.3 更长的电池寿命

       NB-IoT是一种低功耗技术,这意味着它可以支持电池寿命长达十年的连接设备。这一特性对于物联网应用尤其有益,因为在这些应用中,设备可能需要在充电的情况下长时间运行。

4.4 全球可用性

       5G NB-IoT与3GPP标准的集成确保了该技术在全球范围内可用。NB-IoT(和LTE-M)是3GPP计划支持低功耗广域(LPWA)用例的唯一标准,使其成为全球接受的物联网应用解决方案。

4.5 实现新的和创新的解决方案

       未来NB-IoT网络的强大和灵活性将导致新的、创新的解决方案的部署,这些解决方案以前是不可支持的,甚至是无法想象的。无论是用于紧急服务、关键任务情况还是简单的传感器监视,基于NTN的NB-IoT都可以建立自动或手动通信通道,创造新的用户体验。


五、性能分析

       在将NB-IoT与NTN集成,需要考虑的关键因素是链路预算分析。基于NTN的NB-IoT链路预算分析涉及多个因素。发射信号的功率、天线的增益和损耗、由于传播造成的信号损耗(在NTN中尤其重要,因为信号可能需要在空间中传播很长一段距离),以及接收机的灵敏度都是至关重要的考虑因素

  • 发射信号的功率是一个关键因素。在基于NTN的NB-IoT中,信号可能需要在空间中传播很长的距离,这会导致显著的传播损耗。因此,发射机必须有足够的功率,以确保信号能以足够的强度到达接收机;
  • 天线增益可以帮助补偿部分信号损失。高增益天线可以将信号聚焦得更窄,从而增加接收方向上的信号强度。然而,天线的损耗,如那些由于阻抗失配,也必须考虑;
  • 接收机的灵敏度是另一个重要因素。接收机必须足够敏感,能够检测到信号,即使信号强度由于传播损耗等因素已经显著降低;

       该分析对于评估基于NTN的NB-IoT的可行性和性能至关重要。但是我们如何衡量它的性能呢?让我们假设一个场景,我们想要计算NTN系统上的NB-IoT的链路预算。对于这个模拟,我们将使用everything RF网站上的链接预算计算器:

  • PTX:发射机的输出功率。在我们的模拟中,假设它是23 dBm;
  • GTX:发射机天线的增益。假设是14 dBi;
  • LTX:这些是发射机系统中的损耗。假设是2分贝;
  • LFS:这是信号在自由空间传播时发生的功率损耗。这个值取决于距离和频率。对于我们的模拟,我们假设它是148 dB;
  • LM:这些是系统中可能发生的其他损失。假设是3分贝;
  • GRX:接收天线的增益。假设是14 dBi;
  • LRX:这些是接收机系统中的损耗。假设是2分贝。

       将这些值输入计算器后,计算得到的接收功率为-104 dBm。-104 dBm的接收功率对于许多低功耗的物联网应用(如NB-IoT)来说是相当低的,这意味着信号到达接收端时很弱。然而,NB-IoT被设计可以在如此低的信号强度下工作,它利用先进的信号处理技术从这些微弱信号中提取传输信息。即使信号很弱,只要超过接收器的灵敏度阈值(接收器正确解码信号所需的最小信号强度),就可以进行通信。对于NB-IoT,这个灵敏度阈值通常在-130 dBm到-140 dBm之间,因此-104 dBm的接收功率就足以成功通信


六、技术挑战

路径损耗和多普勒偏移该高度会导致高路径损耗和大RTT。低轨卫星的移动性给无线链路带来了非常高的多普勒偏移,同时也不可避免地要求所有设备频繁更换服务节点
更高的频率意味着更大的信号挑战NB-IoT NTN将在2~4GHz之间的s频段开始工作,跨越传统的超高频(UHF)和超高频(SHF)频段。然而,更高的频率可能会影响全球范围内卫星连接的5G服务质量、效率和可靠性。3GPP和国际电联正在进行讨论,以解决频谱挑战及其如何影响NB-IoT连接
安全随着联网设备数量的增加,物联网容易受到网络攻击。因此,需要采取认证、加密、防火墙等安全措施,防止数据泄露。
成本对于需要低成本通信的应用,NB-IoT可能是最佳选择。然而,在蜂窝覆盖有限或不存在的偏远地区,卫星通信可能是唯一可行的选择,尽管其成本较高。
交互性无论使用何种制造商或技术,物联网设备必须能够相互通信。标准化对于确保互操作性至关重要。
功耗对于电池供电的设备,NB-IoT是比卫星通信更好的选择,因为它可以在低功耗下运行。相比之下,卫星通信需要更高的传输功耗,这可能会限制电池供电设备的寿命。
数据管理物联网设备产生大量的数据,必须进行收集、分析和存储。这就需要能够处理大数据的数据管理系统。

总结

       3GPP提出了将卫星纳入5G系统的具体建议。这些建议对于NB-IoT在NTN上的成功实施至关重要。3GPP的建议是基于NTN系统中用户设备(UE)的类型。

  • 对于具有全球导航卫星系统(Global Navigation Satellite System, GNSS)能力的UEs, UE对多普勒频移和时延传播进行预补偿。由于了解卫星星历和可用的UE位置,这是可能实现的;
  • 对于不具备GNSS能力的UE,卫星对地面波束中心的多普勒频移进行预补偿,并将公共时延广播给相关波束内的所有UE,用于上行传输。这些建议对于NB-IoT与NTN的无缝集成至关重要,确保系统能够应对卫星约束带来的独特挑战,如更大的传播延迟和更强的多普勒效应。

       综上所述,将NB-IoT集成到NTN为物联网连接提供了有前景的发展。这种集成带来了改进的覆盖率、多功能性、延长电池寿命、全球可用性和创新解决方案的潜力。尽管存在技术复杂性和挑战,如路径损耗、多普勒偏移、安全性、互操作性、成本和数据管理,3GPP提供的指导方针提供了一个强大的框架来解决这些问题。随着研究和开发的继续,NTN上的NB-IoT具有革命性的全球连接的巨大潜力。


参考

  • 3GPP T36.763 R17


在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/471746.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

10000字!一文学会SQL数据分析

文章来源于山有木兮 原文链接:https://edu.cda.cn/goods/show/3412?targetId5695&preview0 第1节 SQL简介与基础知识 做数据分析的,为什么要写SQL? 没有数据的情况下,我们分析数据就像是巧妇难为无米之炊。因此&#xff0c…

Netty学习——源码篇3 服务端Bootstrap(一) 备份

1 介绍 在分析客户端的代码中,已经对Bootstrap启动Netty有了一个大致的认识,接下来在分析服务端时,就会相对简单。先看一下服务端简单的启动代码。 public class ChatServer {public void start(int port) throws Exception{NioEventLoopGro…

解锁鸿蒙小程序开发新姿势

如今,鸿蒙开发日益受到广大开发者的关注,而小程序开发也早已成为互联网领域的热门话题。那么,我们不禁要问:是否有可能将这两者融为一体,将小程序开发的便捷与高效带入鸿蒙生态中呢?本文将首先带你回顾小程…

SpringCloud alibaba入门简介

SpringCloud alibaba入门简介 1、简介 SpringCloud alibaba官网:SpringCloudAlibaba | Spring Cloud Alibaba (aliyun.com) Spring官网:Spring Cloud Alibaba GitHub中文文档:spring-cloud-alibaba/README-zh.md at 2022.x alibaba/spri…

数据库基本介绍及编译安装mysql

目录 数据库介绍 数据库类型 数据库管理系统(DBMS) 数据库系统 DBMS的工作模式 关系型数据库的优缺点 编译安装mysql 数据库介绍 数据:描述事物的的符号纪录称为数据(Data) 表:以行和列的形式组成…

公众号怎么更换主体

公众号账号迁移的作用是什么?只能变更主体吗?1.可合并多个公众号的粉丝、文章,打造超级大V2.可变更公众号主体,更改公众号名称,变更公众号类型——订阅号、服务号随意切换3.可以增加留言功能4.个人订阅号可迁移到企业名…

零知识玩转AVH(8)—— 门槛任务(3)所遇错误及解决(2)

接前一篇文章:零知识玩转AVH(7)—— 门槛任务(2)所遇错误及解决(1) 上一回说到在尝试完成门槛任务 https://github.com/ArmDeveloperEcosystem/Paddle-examples-for-AVH (推荐&#…

阿里G6 树状图使用 Iconfont

官网&#xff1a;使用 Iconfont | G6 效果&#xff1a; 完整代码&#xff1a;index.html: <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <meta name"viewport" content"widthdevice-width…

Python矩阵计算

文章目录 求积求逆最小二乘法特征值 Python科学计算&#xff1a;数组&#x1f4af;数据生成&#x1f4af;数据交互&#x1f4af;微积分&#x1f4af;插值&#x1f4af;拟合&#x1f4af;FFT&#x1f4af;卷积&#x1f4af;滤波&#x1f4af;统计 求积 矩阵是线性代数的核心对…

开发CodeSys可视化控件

文章目录 背景解决方案HTML5 elementsUsing a Visualization as an Element 背景 目前接公司需求&#xff0c;需要开发一套视觉检测系统&#xff0c;并将其集成到codesys中。 编程端基本是采用之前说得的C接口来实现【CodeSys中调用C语言写的动态库】&#xff0c;但是检测画面…

算法笔记p251队列循环队列

目录 队列循环队列循环队列的定义初始化判空判满入队出队获取队列内元素的个数取队首元素取队尾元素 队列 队列是一种先进先出的数据结构&#xff0c;总是从队尾加入元素&#xff0c;从队首移除元素&#xff0c;满足先进先出的原则。队列的常用操作包括获取队列内元素的个数&a…

打造精美响应式CSS日历:从基础到高级样式

&#x1f31f; 前言 欢迎来到我的技术小宇宙&#xff01;&#x1f30c; 这里不仅是我记录技术点滴的后花园&#xff0c;也是我分享学习心得和项目经验的乐园。&#x1f4da; 无论你是技术小白还是资深大牛&#xff0c;这里总有一些内容能触动你的好奇心。&#x1f50d; &#x…

【09】进阶JavaScript事件循环Promise

一、事件循环 浏览器的进程模型 何为进程? 程序运行需要有它自己专属的内存空间,可以把这块内存空间简单的理解为进程 每个应用至少有一个进程,进程之间相互独立,即使要通信,也需要双方同意。 何为线程? 有了进程后,就可以运行程序的代码了。 运行代码的「人」称之…

Makefile的基本知识

文章目录 一、使用Makefile 的引入1.GCC的编译流程2.Makefile的引入 二、Makefile的语法规则三、Makefile中的变量1.全局变量2.赋值符“”&#xff0c;“&#xff1a;”&#xff0c;“&#xff1f;”区别 四、Makefile中的自动化变量四、Makefile中伪目标五、Makefile中条件判断…

安防监控视频汇聚平台EasyCVR接入海康Ehome设备,设备在线但视频无法播放是什么原因?

安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及支持厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等。平台既具备传统安…

Elastic 线下 Meetup 将于 2024 年 3 月 30 号在武汉举办

2024 Elastic Meetup 武汉站活动&#xff0c;由 Elastic、腾讯、新智锦绣联合举办&#xff0c;现诚邀广大技术爱好者及开发者参加。 活动时间 2024年3月30日 13:30-18:00 活动地点 中国武汉 武汉市江夏区腾讯大道1号腾讯武汉研发中心一楼多功能厅 13:30-14:00 入场 活动流程…

微信小程序获取手机号(Java后端)

最近在做小程序后端的时候&#xff0c;需要拿到手机号进行角色校验&#xff0c;小白也是第一次获取小程序的手机号&#xff0c;所以功能完毕后总结一下本次操作咯。 根据微信小程序官方文档&#xff1a;获取手机号 | 微信开放文档 调用的接口是getPhoneNumber 请求参数 从伤处…

C语言数据结构-二叉树基础练习

繁霜尽是心头血 洒向千峰秋叶丹 目录 二叉树最大的深度 思路 代码展示 单值二叉树 思路 代码展示 相同的树 思路 代码展示 对称二叉树 思路 代码展示 另一颗树的子树 思路 代码展示 二叉树最大的深度 题目链接&#xff1a;二叉树最大的深度 给定一个二叉树 root &#xff0…

osgEarth学习笔记3-第二个Osg QT程序

原文链接 打开QT Creator&#xff0c;新建一个窗口项目。 QT版本如下&#xff1a; 修改pro文件 QT core gui greaterThan(QT_MAJOR_VERSION, 4): QT widgets CONFIG c11 DEFINES QT_DEPRECATED_WARNINGS SOURCES \main.cpp \mainwindow.cpp HEADERS \mainwindow…

释放创造力,Nik Collection 6 by DxO 点亮你的视觉世界

在数字摄影时代&#xff0c;后期处理是提升摄影作品品质的重要环节。而Nik Collection 6 by DxO作为一套优秀的滤镜插件套装&#xff0c;不仅为摄影师提供了丰富的后期处理工具&#xff0c;更让他们能够释放无限的创造力&#xff0c;打造出惊艳的视觉作品。 Nik Collection 6 …