YOLOv7 | 添加GSConv,VoVGSCSP等多种卷积,有效提升目标检测效果,代码改进(超详细)

⭐欢迎大家订阅我的专栏一起学习⭐

🚀🚀🚀订阅专栏,更新及时查看不迷路🚀🚀🚀
       YOLOv5涨点专栏:http://t.csdnimg.cn/QdCj6

YOLOv7专栏: http://t.csdnimg.cn/dygOj

YOLOv8涨点专栏:http://t.csdnimg.cn/Avu8g

                    💡魔改网络、复现论文、优化创新💡                

目录

主要想法

GSConv

GSConv代码实现 

 slim-neck

  slim-neck代码实现

yaml文件

完整代码分享

总结


目标检测是计算机视觉中重要的下游任务。对于车载边缘计算平台来说,巨大的模型很难达到实时检测的要求。而且,由大量深度可分离卷积层构建的轻量级模型无法达到足够的精度。我们引入了一种新的轻量级卷积技术 GSConv,以减轻模型重量但保持准确性。 GSConv 在模型的准确性和速度之间实现了出色的权衡。并且,我们提供了一种设计范例,细颈,以实现探测器更高的计算成本效益。我们的方法的有效性在二十多组比较实验中得到了强有力的证明。特别是,与原始检测器相比,通过我们的方法改进的检测器获得了最先进的结果(例如,在公开数据集的Tesla T4 GPU 上以100FPS 的速度获得 70.9% mAP0.5)。

 主要想法

生物大脑处理信息的强大能力和低能耗远远超出了计算机。简单地无休止地增加模型参数的数量并不能建立强大的模型。轻量化设计可以有效缓解现阶段高昂的计算成本。这个目的主要是通过深度可分离卷积(DSC)运算来减少参数量和浮点运算(FLOP)来实现的,效果很明显。然而DSC的缺点也很明显:在计算过程中输入图像的通道信息被分离。这一缺陷导致 DSC 的特征提取和融合能力比标准卷积 (SC) 低得多。

 SC(左) 和 DSC(右) 的计算过程。 SC是通道密集卷积计算,DSC是通道稀疏卷积计算。

GSConv

尽管DSC有一定的优点,但DSC 的缺陷在主干中直接被放大,无论是用于图像分类还是检测。我们相信SC和DSC可以合作。我们注意到,仅通过混洗 DSC 输出通道生成的特征图仍然是“深度分离”。为了使DSC的输出尽可能接近SC,我们引入了一种新方法——SC、DSC和shuffle的混合卷积,命名为GSConv。如图所示,我们使用shuffle将SC(通道密集卷积运算)生成的信息渗透到DSC生成的信息的每个部分中。shuffle是一种统一的混合策略。该方法通过在不同通道上统一交换局部特征信息,可以将来自 SC 的信息完全混合到 DSC 的输出中,而无需任何附加功能。

GSConv 模块的结构—— “Conv”框由三层组成:卷积 2D 层、批量归一化 2D 层和激活层。这里蓝色标记的“DWConv”表示DSC操作。
GSConv代码实现 
import torch
import torch.nn as nn
import math


# GSConvE test
class GSConvE(nn.Module):
    '''
    GSConv enhancement for representation learning: generate various receptive-fields and
    texture-features only in one Conv module
    https://github.com/AlanLi1997/slim-neck-by-gsconv
    '''
    def __init__(self, c1, c2, k=1, s=1, g=1, act=True):
        super().__init__()
        c_ = c2 // 4
        self.cv1 = Conv(c1, c_, k, s, None, g, act)
        self.cv2 = Conv(c_, c_, 9, 1, None, c_, act)
        self.cv3 = Conv(c_, c_, 13, 1, None, c_, act)
        self.cv4 = Conv(c_, c_, 17, 1, None, c_, act)

    def forward(self, x):
        x1 = self.cv1(x)
        x2 = self.cv2(x1)
        x3 = self.cv3(x1)
        x4 = self.cv4(x1)

        y = torch.cat((x1, x2, x3, x4), dim=1)
        # shuffle
        y = y.reshape(y.shape[0], 2, y.shape[1] // 2, y.shape[2], y.shape[3])
        y = y.permute(0, 2, 1, 3, 4)
        return y.reshape(y.shape[0], -1, y.shape[3], y.shape[4])


def autopad(k, p=None):  # kernel, padding
    # Pad to 'same'
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p


class Conv(nn.Module):
    # C_B_M
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.Mish() if act else (act if isinstance(act, nn.Module) else nn.Identity())

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        return self.act(self.conv(x))


class GSConv(nn.Module):
    # GSConv https://github.com/AlanLi1997/slim-neck-by-gsconv
    def __init__(self, c1, c2, k=1, s=1, g=1, act=True):
        super().__init__()
        c_ = c2 // 2
        self.cv1 = Conv(c1, c_, k, s, None, g, act)
        self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)

    def forward(self, x):
        x1 = self.cv1(x)
        x2 = torch.cat((x1, self.cv2(x1)), 1)
        # shuffle
        y = x2.reshape(x2.shape[0], 2, x2.shape[1] // 2, x2.shape[2], x2.shape[3])
        y = y.permute(0, 2, 1, 3, 4)
        return y.reshape(y.shape[0], -1, y.shape[3], y.shape[4])


class GSConvns(GSConv):
    # GSConv with a normative-shuffle https://github.com/AlanLi1997/slim-neck-by-gsconv
    def __init__(self, c1, c2, k=1, s=1, g=1, act=True):
        super().__init__(c1, c2, k=1, s=1, g=1, act=True)
        c_ = c2 // 2
        self.shuf = nn.Conv2d(c_ * 2, c2, 1, 1, 0, bias=False)

    def forward(self, x):
        x1 = self.cv1(x)
        x2 = torch.cat((x1, self.cv2(x1)), 1)
        # normative-shuffle, TRT supported
        return nn.ReLU(self.shuf(x2))


class GSBottleneck(nn.Module):
    # GS Bottleneck https://github.com/AlanLi1997/slim-neck-by-gsconv
    def __init__(self, c1, c2, k=3, s=1):
        super().__init__()
        c_ = c2 // 2
        # for lighting
        self.conv_lighting = nn.Sequential(
            GSConv(c1, c_, 1, 1),
            GSConv(c_, c2, 3, 1, act=False))
        self.shortcut = Conv(c1, c2, 1, 1, act=False)

    def forward(self, x):
        return self.conv_lighting(x) + self.shortcut(x)


class DWConv(Conv):
    # Depth-wise convolution class
    def __init__(self, c1, c2, k=1, s=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)


class GSBottleneckC(GSBottleneck):
    # cheap GS Bottleneck https://github.com/AlanLi1997/slim-neck-by-gsconv
    def __init__(self, c1, c2, k=3, s=1):
        super().__init__(c1, c2, k, s)
        self.shortcut = DWConv(c1, c2, 3, 1, act=False)


class VoVGSCSP(nn.Module):
    # VoVGSCSP module with GSBottleneck
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        # self.gc1 = GSConv(c_, c_, 1, 1)
        # self.gc2 = GSConv(c_, c_, 1, 1)
        self.gsb = GSBottleneck(c_, c_, 1, 1)
        self.res = Conv(c_, c_, 3, 1, act=False)
        self.cv3 = Conv(2*c_, c2, 1)  #

    def forward(self, x):

        x1 = self.gsb(self.cv1(x))
        y = self.cv2(x)
        return self.cv3(torch.cat((y, x1), dim=1))
 slim-neck

此外,还研究了增强 CNN 学习能力的通用方法,例如 DensNet 、VoVNet 和 CSPNet ,然后根据这些方法的理论设计 slim-neck 的结构。我们设计了细长的颈部,以降低检测器的计算复杂性和推理时间,但保持精度。 GSConv完成了降低计算复杂度的任务,而减少推理时间并保持精度的任务需要新的模型。 

GSConv的计算成本约为SC的50%(0.5+0.5C1,C1值越大,比例越接近50%),但其对模型学习能力的贡献与后者相当。基于GSConv,我们在GSConv的基础上继续引入GS瓶颈,下图(a)展示了GS瓶颈模块的结构。然后,我们使用一次性聚合方法设计跨阶段部分网络(GSCSP)模块VoV-GSCSP。图(b)(c)和(d)分别显示了我们为VoV-GSCSP提供的三种设计方案,其中(b)简单直接且推理速度更快,(c)和(d)具有功能的重用率更高。事实上,结构越简单的模块由于硬件友好而更容易被使用。下表也详细报告了VoV-GSCSP1、2、3三种结构的消融研究结果,事实上,VoVGSCSP1表现出更高的性价比。最后,我们需要灵活地使用 GSConv、GS 瓶颈和 VoV-GSCSP 这四个模块。

(a) GS瓶颈模块和(b)、(c)、(d) VoV-GSCSP1、2、3模块的结构

细颈 yolov5n 的三种不同 VoV-GSCSP 模块的比较
  slim-neck代码实现
class VoVGSCSPC(VoVGSCSP):
    # cheap VoVGSCSP module with GSBottleneck
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        super().__init__(c1, c2, e)
        c_ = int(c2 * e)  # hidden channels
        self.gsb = GSBottleneckC(c_, c_, 3, 1)

代码都添加在common.py中 

yaml文件
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicle
# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, GSConv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, VoVGSCSP, [512, False]],  # 13

   [-1, 1, GSConv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, VoVGSCSP, [256, False]],  # 17 (P3/8-small)

   [-1, 1, GSConv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, VoVGSCSP, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, GSConv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, VoVGSCSP, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]
完整代码分享

本代码结合了YOLOv7的官方仓库进行改进,实现了YOLOv7 + GSconv

完整代码链接如下:

链接: https://pan.baidu.com/s/1zQgPu1lxZ4Sm3HYiCW3awg?pwd=v4m4 提取码: v4m4 

如果执行代码出现如下面的样例则代表替换卷积模块成功。

改进后的样例,部分截图

总结

本实验引入了一种新的轻量级卷积方法 GSConv,使深度可分离卷积达到接近普通卷积的效果并且更加高效。设计了一次性聚合模块 VoV-GSCSP 来代替普通的瓶颈模块以加速推理。此外,我们还提供轻量化的细颈设计范例。在我们的实验中,与其他轻量级卷积方法相比,GSConv 显示出更好的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/471650.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Qt 多元素控件

Qt开发 多元素控件 Qt 中提供的多元素控件有: QListWidgetQListViewQTableWidgetQTableViewQTreeWidgetQTreeView xxWidget 和 xxView 之间的区别 以 QTableWidget 和 QTableView 为例. QTableView 是基于 MVC 设计的控件. QTableView 自身不持有数据. 使用QTableView 的 …

latex如何让标题section取消数字标号

解决方法——加一个*号 在LaTeX中,如果你想让section标题取消数字标号,可以使用section*代替section。section*将生成一个不带数字标号的节标题。 例如,你可以这样写: \section*{这是不带数字标号的节标题}这将生成一个标题&am…

给老婆整了个短剧搜索机器人APP

最近短剧挺火,很多群友们都在做一些资源分享,老胡于是基于这些资源做了个短剧搜索引擎,挺多朋友喜欢看的,我老婆也在看哈哈,真上头,废话不多说,上短剧机器人。 短剧机器人 直接在微信群输入&…

解决由于历史原因解析tflite失败的问题

文章目录 0. 背景1. tflite 历史遗留问题2. schema3. flatbuffers 编译器3.1 安装 FlatBuffers 编译器3.2. 编译 FlatBuffers schema 文件3.3 使用生成的 Python 文件 4 问题未解决终极解决方案 写在最前面:解决方法是升级tensorflow版本,重新生成tflite…

【go从入门到精通】if else 条件控制

Go 语言条件语句: 在 Go 语言中,条件语句用于根据不同的条件执行不同的代码。Go 语言提供了两种条件语句:if 语句和switch 语句。 if语句 if由一个布尔表达式后紧跟一个或多个语句组成。 语法 Go 编程语言中 if 语句的语法如下&#xff…

反向海淘系统中的数据安全挑战与解决方案探讨

**反向海淘系统中的数据安全挑战与解决方案探讨** **一、背景** 随着反向海淘市场的不断扩大,涉及的数据安全挑战也日益增多。本文旨在探讨反向海淘系统中面临的数据安全挑战,以及相应的解决方案。 **二、数据安全挑战** 1. **数据传输安全**&#x…

微信支付宝--充ChatGPTPLUS/openAI key

ChatGPT是人工智能技术驱动的自然语言处理工具,它能够基于在预训练阶段所见的模式和统计规律,来生成回答,还能根据聊天的上下文进行互动,真正像人类一样来聊天交流,甚至能完成撰写论文、邮件、脚本、文案、翻译、代码等…

【Python】反编译PyInstaller打包的exe

查看exe基本信息 需要反编译的exe 查看exe文件的打包工具,查看exe信息的软件叫Detect It Easy(查壳工具) 由图我们可以看出当前选中的exe文件是由名叫PyInstaller的打包工具打包好的exe 反编译 exe反编译工具:pyinstxtractor.py 使用方法 python py…

面试算法-65-二叉树的层平均值

题目 给定一个非空二叉树的根节点 root , 以数组的形式返回每一层节点的平均值。与实际答案相差 10-5 以内的答案可以被接受。 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:[3.00000,14.50000,11.00000] 解释:第 0 层的…

【Spring高级】AOP和动态代理

目录 AspectJ实现AOPJava Agent实现AOPProxy(代理)模式实现AOPJDK代理CGLIB代理 AOP的底层实现切点Aspect与Advisor切面AOP底层的实现演示 Spring中的代理选择 在Java中,AOP(面向切面编程)的实现可以通过以下几种方法&…

MySQL的日志:undo log、redo log、binlog有什么作用

目录 从一个update语句说起 undo log 为什么需要undo log undo log 版本链 undo log 是如何持久化到磁盘? redo log 为什么需要redo log redo的组成 redo Log的刷盘策略 redo Log循环写 crash-safe能力 binlog 为什么需要 binlog ? binlog与redo lo…

淘宝API接口开发系列——淘宝详情数据采集

淘宝详情数据采集涉及多种技术和方法,下面列举几种常见的方式: 请求示例,API接口接入Anzexi58 爬虫技术:使用编程语言(如Python)编写网络爬虫程序,通过模拟浏览器行为访问淘宝网站,…

XMind:让思维可视化,提升工作效率的利器

XMind是一款全球领先的开源思维导图和头脑风暴软件,它应用全球最先进的Eclipse RCP软件架构,拥有优秀的用户体验,凭借简单易用、功能强大的特点,在2013年被著名互联网媒体Lifehacker评选为全球最受欢迎的思维导图软件。目前&#…

PyQt上手指南

文章目录 前言PyQt的好处从一个最简单的例子入手PyQt5基础组件体系源码结构 Qt Designer基础布局高级界面Web控件 多线程列表图形绘制PyQt5.QtGuiPyQtGraphmatplotlib和PyQt结合和mplfinance结合 工具使用打包链接 前言 用户界面开发,我搞过visual C MFC、Delphi V…

【链表】Leetcode 142. 环形链表 II【中等】

环形链表 II 给定一个链表的头节点 head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。 如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系…

ruoyi-activiti添加用车申请流程(二)

实体类Car中必须要有String userId属性。 设置自定义表单为system/car/deptleadercheck: 然后在CarController中编写system/car/deptleadercheck对应的函数: GetMapping("/deptleadercheck")public String deptleadercheck(String taskid, M…

学习总结!

最近主要学习了java&#xff0c;题目的话就写了两道。 这道题目运用三维的bfs&#xff0c;第一次做时无从下手&#xff0c;原来可以利用三维数组&#xff08;第一次用三维数组&#xff09;可以解决这类问题&#xff0c;然后套bfs模板即可。 #include<iostream> #include…

算法体系-11 第十一节:二叉树基本算法(上)

一 两链表相交 1.1 题目描述 给定两个可能有环也可能无环的单链表&#xff0c;头节点head1和head2。请实现一个函数&#xff0c;如果两个链表相交&#xff0c;请返回相交的 第一个节点。如果不相交&#xff0c;返回null 【要求】 如果两个链表长度之和为N&#xff0c;时间复杂…

瑞_Redis_短信登录_基于Session实现登录流程

文章目录 项目介绍1 短信登录1.1 项目准备1.2 基于Session实现登录流程1.2.1 功能流程介绍1.2.1.1 发送短信验证码1.2.1.2 短信验证码登录、注册1.2.1.3 校验登录状态 1.2.2 实现发送短信验证码功能1.2.2.1 页面流程1.2.2.2 代码实现1.2.2.3 测试 1.2.3 实现短信验证码登录、注…

SLAM 算法综述

LiDAR SLAM 其主要思想是通过两个算法&#xff1a;一个高频激光里程计进行低精度的运动估计&#xff0c;即使用激光雷达做里程计计算两次扫描之间的位姿变换&#xff1b;另一个是执行低频但是高精度的建图与校正里程计&#xff0c;利用多次扫描的结果构建地图&#xff0c;细化位…