数据结构奇妙旅程之红黑树

꒰˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱
ʕ̯•͡˔•̯᷅ʔ大家好,我是xiaoxie.希望你看完之后,有不足之处请多多谅解,让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客
本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN 如需转载还请通知˶⍤⃝˶
个人主页:xiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客
系列专栏:xiaoxie的JAVA系列专栏——CSDN博客●'ᴗ'σσணღ*
我的目标:"团团等我💪( ◡̀_◡́ ҂)" 

( ⸝⸝⸝›ᴥ‹⸝⸝⸝ )欢迎各位→点赞👍 + 收藏⭐️ + 留言📝​+关注(互三必回)!

一.红黑树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何 一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出两倍,因而是接近平衡的。

二.红黑树的性质

1. 每个结点不是红色就是黑色

2. 根节点是黑色的

3. 如果一个节点是红色的,则它的两个孩子结点是黑色的【没有2个连续的红色节点】

4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点

5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点) 

三.红黑树的插入

红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:

1. 按照二叉搜索的树规则插入新节点

2. 检测新节点插入后,红黑树的性质是否造到破坏 因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要 调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对 红黑树分情况来讨论: 

 这里解释一下为什么新插入的节点是红色的,因为假如插入节点的节点是黑色的,那么为了要满足性质4对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点就需要再插入节点为了满足性质4,这样就浪费很多空间,而要是新插入的节点是红色的,我们只需要调整颜色即可.

约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点

1.情况一: cur为红,p为红,g为黑,u存在且为红

出现这种情况情况,我们先需要把p和u 变成黑色,然后再把g变成红色即可.

这个时候,还需要考虑到

1.g为根节点,只需要在调整结束后,把它变为黑色即可

2.g有双亲节点,且为红色就需要将g当成cur,继续向上调整。(如果双亲节点,为黑色,p和g 变成黑色,然后再把g变成红色后就不违反红黑树的性质了)

这里再解释一下为什么要把把p和u变成黑色,然后再把g变成红色.

1.首先把p变成红色是因为cur为红色,p也为红色的话就违反了性质3,不能有两个连续的红色节点,所以需要把p变成黑色.

2.为什么要把u变成黑色是因为性质4,每条路径要有相同路径的黑色节点,如果u为红色,p为黑色就不满足该性质,所以要把u变成黑色

3.为什么要把g变成红色,因为假如g还有双亲节点的话,且双亲节点为黑色,那么,由于p和u变成了黑色,为了要满足,性质4,每条路径要有相同路径的黑色节点,就需要增加黑色节点的个数,所以需要把g变成红色,p和u变成黑色,就满足了性质4

 2.情况二:cur为红,p为红, g为黑,u不存在/u为黑

就是因为在出现情况一之后,调整,p,u,g的颜色导致了情况二的发生

我们该如何调整调整使它满足红黑树的五条性质呢,我们可以发现,仅仅简单的改变颜色并不可以满足红黑树的五条性质,这个时候我们可以发现,这个情况是不是很像AVL树树中的左树高于,右数的情况,这个时候对于AVL树来说,可以使用右旋来解决这个问题,我们是不是也可以通过旋转操作可以调整节点的位置,然后只要在稍微改变个边节点的颜色即使它满足红黑树的性质.

右旋后再根据红黑树的性质,把g变为红色,p变为黑色,即可 

3.情况三: cur为红,p为红,g为黑,u不存在/u为黑 

在调整的过程中,cur变成了红色,导致情况三的发生, 同时,我们发现和AVL树类似,仅仅通过左旋或者右旋并不可以可以调整节点的位置,因为是较高左树的右子树较高,我们先进行,左旋.

通过左旋我们发现,可以把问题转换为情况二,即可解决该问题.

4.说明

从上面的这些情况我们可以发现,在上面这些图中,p都为g的左孩子的情况,p为g右孩子的情况我并没有说明,在这里博主统一说明一下,因为p为g右孩子的情况就是p都为g的左孩子的情况的相当于镜像处理即

在情况二中

p为g的左孩子,cur为p的左孩子,则进行右单旋转;相反, p为g的右孩子,cur为p的右孩子,则进行左单旋转

在情况三中

p为g的左孩子,cur为p的右孩子,则针对p做左单旋转;相反, p为g的右孩子,cur为p的左孩子,则针对p做右单旋转

所以博主就不展示调整过程了,直接上代码

5.代码实现

public class RBTree {
    public static enum COLOR {RED, BLACK} // 定义颜色枚举,表示节点的红黑状态

    // 红黑树节点类
    public static class RbTreeNode {
        public RbTreeNode left;  // 左子节点
        public RbTreeNode right; // 右子节点
        public RbTreeNode parent; // 父节点
        public int val;          // 节点值
        public COLOR color;      // 节点颜色,默认为红色

        // 构造函数,创建一个带有指定值的新节点,并将其颜色设置为红色
        public RbTreeNode(int val) {
            this.val = val;
            this.color = COLOR.RED;
        }
    }

    // 树的根节点
    public RbTreeNode root;

    // 插入新节点方法
    public boolean insert(int val) {
        RbTreeNode node = new RbTreeNode(val);
        if(root == null) {
            root = node;
            return true;
        }

        // 寻找插入位置
        RbTreeNode cur = root;
        RbTreeNode parent = null;
        while (cur != null) {
            if(node.val < cur.val) {
                parent = cur;
                cur = cur.left;
            } else if(node.val > cur.val) {
                parent = cur;
                cur = cur.right;
            } else {
                System.out.println("这个节点" + val +"已经存在了");
                return false;
            }
        }

        // 插入新节点并更新父节点指向
        if(parent.val < node.val) {
            parent.right = node;
        } else {
            parent.left = node;
        }
        node.parent = parent;

        // 调整红黑树性质
        cur = node;
        while (parent != null && parent.color == COLOR.RED) {
            RbTreeNode grandfather = parent.parent;
                if(parent == grandfather.left) {//p节点为g节点的左孩子
                RbTreeNode uncle = grandfather.right;
                //uncle不为空,且uncle的颜色为红色
            // 获取叔叔节点
          
            // 情况一:叔叔节点存在且为红色
            if(uncle != null && uncle.color == COLOR.RED) {
                grandfather.color = COLOR.RED;
                parent.color = COLOR.BLACK;
                uncle.color = COLOR.BLACK;
                cur = grandfather;
                parent = cur.parent;
            } else {
                // 情况三:叔叔节点不存在或为黑色
                if(cur == parent.right) { // 需要左旋
                    rotateLeft(parent);
                    RbTreeNode tmp = parent;
                    parent = cur;
                    cur = tmp;
                }
                //情况二:叔叔节点不存在或为黑色
                rotateRight(grandfather); // 右旋以修复红黑树性质
                grandfather.color = COLOR.RED;
                parent.color = COLOR.BLACK;
            }else {///p节点为g节点的右孩子//镜像处理和/p节点为g节点的左孩子类似
                 RbTreeNode uncle = grandfather.left;
                if(uncle != null && uncle.color == COLOR.RED) {
                    grandfather.color = COLOR.RED;
                    parent.color = COLOR.BLACK;
                    uncle.color = COLOR.BLACK;
                    cur = grandfather;
                    parent = cur.parent;
                }else {
                    //情况三
                    if(cur == parent.left) {
                        rotateRight(parent);
                        RbTreeNode tmp = parent;
                        parent = cur;
                        cur = tmp;
                    }
                    //情况二
                    //叔叔节点不存在 || 叔叔节点存在,但是颜色是黑色
                    rotateLeft(grandfather);
                    grandfather.color = COLOR.RED;
                    parent.color = COLOR.BLACK;
                }
        }

        return true;
    }

    /**
     * 右旋操作
     * @param parent 需要右旋的节点(旋转中心)
     */
    private void rotateRight(RbTreeNode parent) {
        RbTreeNode subL = parent.left;
        RbTreeNode subLR = subL.right;

        subL.right = parent;
        parent.left = subLR;

        if(subLR != null) {
            subLR.parent = parent;
        }

        RbTreeNode Pparent = parent.parent;
        parent.parent = subL;

        if(parent == root) {
            root = subL;
            root.parent = null;
            root.color = COLOR.BLACK;//如果是根节点就要为黑色
        } else {
            if(Pparent.left == parent) {
                Pparent.left = subL;
            } else {
                Pparent.right = subL;
            }
            subL.parent = Pparent;
        }
    }

    /**
     * 左旋操作
     * @param parent 需要左旋的节点(旋转中心)
     */
    private void rotateLeft(RbTreeNode parent) {
        RbTreeNode subR = parent.right;
        RbTreeNode subRL = subR.left;

        subR.left = parent;
        parent.right = subRL;

        if(subRL != null) {
            subRL.parent = parent;
        }

        // 记录parent节点的父亲节点
        RbTreeNode Pparent = parent.parent;
        parent.parent = subR;

        if(parent == root) {
            root = subR;
            subR.parent = null;
            root.color = COLOR.BLACK;//如果是根节点就要为黑色
        } else {
            if(Pparent.left == parent) {
                Pparent.left = subR;
            } else {
                Pparent.right = subR;
            }
            subR.parent = Pparent;
        }
    }
}

好了,这三种情况都讨论完了,我想强调的是:注意哪些分方向的情况,每个分方向的情形就两种情况

四.红黑树验证

这里博主在提供一下红黑树验证的方法,检测一下你自己手撕红黑树代码有没有错误

1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)

public void inorder(RBTreeNode root) {
if(root == null) {
return;
}
inorder(root.left);
System.out.print(root.val+" ");
inorder(root.right);
}

2.检测其是否满足红黑树的性质

public boolean isValidRBTree()
{
// 空树也是红黑树
if(null == root)
return true;
if(root.color != COLOR.BLACK) {
System.out.println("违反了性质2:根节点不是黑色");
return false;
}
// 获取单条路径中节点的个数
int blackCount = 0;
RBTreeNode cur = root;
while(null != cur){
if(cur.color == COLOR.BLACK)
blackCount++;
cur = cur.left;
}
// 具体的检验方式
return _isValidRBtree(root, 0, blackCount);
}
private boolean _isValidRBtree(RBTreeNode root, int pathCount, int blackCount){
if(null == root)
return true;
// 遇到一个黑色节点,统计当前路径中黑色节点个数
if(root.color == COLOR.BLACK)
pathCount++;
// 验证性质4
RBTreeNode parent = root.parent;
if(parent != null && parent.color == COLOR.RED && root.color == COLOR.RED){
System.out.println("违反了性质4:有连在一起的红色节点");
return true;
}
// 验证性质5
// 如果是叶子节点,则一条路径已经走到底,检验该条路径中黑色节点总个数是否与先前统计的结果相同
if(root.left == null && root.right == null){
if(pathCount != blackCount){
System.out.println("违反了性质5:路径中黑色节点格式不一致");
return false;
}
}
// 以递归的方式检测root的左右子树
return _isValidRBtree(root.left, pathCount, blackCount) &&
_isValidRBtree(root.right, pathCount, blackCount);
}

5. AVL树和红黑树的比较

红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O(logN ),红黑树不追求绝对平衡,其只需保 证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比 AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/469457.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

“团团活力圈”--“书香润童心 阅读伴成长”青少年读书分享活动

书籍是人类进步的阶梯&#xff0c;读书能够陶冶人的情操、开阔眼界&#xff0c;同时&#xff0c;通过读书&#xff0c;能够帮助人们增长知识&#xff0c;培养正确的人生观、价值观。为了帮助青少年多读书&#xff0c;感受读书的乐趣&#xff0c;3月17日&#xff0c;在共青团中央…

【代码】YOLOv8标注信息验证

此代码的功能是标注信息验证&#xff0c;将原图和YOLOv8标注文件&#xff08;txt&#xff09;放在同一个文件夹中&#xff0c;作为输入文件夹 程序将标注的信息还原到原图中&#xff0c;并将原图和标注后的图像一同保存&#xff0c;以便查看 两个draw_labels函数&#xff0c;分…

Ubuntu Desktop - Desktop

Ubuntu Desktop - Desktop 1. Amazon2. Ubuntu Software3. Desktop4. 系统桌面快捷方式5. 用户桌面快捷方式References 1. Amazon Amazon -> Unlock from Launcher 2. Ubuntu Software Installed -> Games -> Remove 3. Desktop /home/strong/Desktop 4. 系统桌面…

Java项目:65 ssm社区文化宣传网站+jsp

作者主页&#xff1a;源码空间codegym 简介&#xff1a;Java领域优质创作者、Java项目、学习资料、技术互助 文中获取源码 项目介绍 本选题则旨在通过标签分类管理等方式&#xff0c; 实现管理员&#xff1b;个人中心、用户管理、社区新闻管理、社区公告管理、社区活动管理、…

React——开发者工具

浏览器插件&#xff1a;谷歌浏览器插件react-devtools 方式1&#xff1a;chrome应用商店添加 方式2&#xff1a;下载安装包放在浏览器上

32串口学习

基于之前的GPIO等工程&#xff0c;后面的上手难度就简单多了&#xff0c;主要是相关寄存器的设置。 void USART1_Config(void) {GPIO_InitTypeDef GPIO_InitStructure;USART_InitTypeDef USART_InitStructure;/* config USART1 clock */RCC_APB2PeriphClockCmd(RCC_APB2Periph…

可视化图表:雷达图的全面介绍,一篇就够了。

一、什么是雷达图 雷达图&#xff08;Radar Chart&#xff09;是一种可视化图表&#xff0c;也被称为蛛网图、星形图或极坐标图。它以一个中心点为起点&#xff0c;从中心点向外延伸出多条射线&#xff0c;每条射线代表一个特定的变量或指标。每条射线上的点或线段表示该变量在…

Linux常用命令之搜索查找类

1.1find查找文件或目录 1&#xff09;基本语法 find [搜索范围] [ 选项] find -name&#xff1a;按照名字查找 find -user&#xff1a;按用户相关查找 find -size&#xff1a;按照文件大小查找 1.2locate快速定位文件路径 经验技巧&#xff1a;由于locate指令基于数据库进行…

Ubuntu上搭建TFTP服务

Ubuntu上搭建TFTP服务 TFTP服务简介搭建TFTP服务安装TFTP服务修改配置文件 重启服务 TFTP服务简介 TFTP是一个基于UDP协议实现的用于在客户机和服务器之间进行简单文件传输的协议&#xff0c;适用于开销不大、不复杂的应用场合。TFTP协议专门为小文件传输而设计&#xff0c;只…

信息学奥赛之C++ cstdlib – 概览

什么是 C cstdlib&#xff1f; C 标准库头文件 (cstdlib in C) 是 C 程序员使用最广泛的库头文件。即&#xff1a;standard librarian。它定义了一系列函数和宏&#xff0c;以实现跨团队、跨平台的高效且具有卓越表现的标准化 C 代码。 C 是一种广受欢迎的程序语言&#xff0c…

总结

文章目录 1. GateWay&#xff1a;100102. Docker3. ES&#xff1a;海量数据的存储、搜索、计算3.1 数据搜索3.2 数据同步 4. 微服务保护&#xff1a;Sentinel4. 分布式事务&#xff1a;&#xff08;二阶段提交&#xff09;5. Redis6. 多级缓存 1. GateWay&#xff1a;10010 2. …

【工具】Mermaid + 大模型画流程图

&#x1f308;个人主页: 鑫宝Code &#x1f525;热门专栏: 闲话杂谈&#xff5c; 炫酷HTML | JavaScript基础 ​&#x1f4ab;个人格言: "如无必要&#xff0c;勿增实体" 文章目录 引入使用画TCP三次握手了解历史人物 总结 引入 最近看面试文章关于TCP三次握手和…

【数据结构】链表力扣刷题详解

前言 题目链接 移除链表元素 链表的中间结点 反转链表 分割链表 环形链表的约瑟夫问题 ​ 欢迎关注个人主页&#xff1a;逸狼 创造不易&#xff0c;可以点点赞吗~ 如有错误&#xff0c;欢迎指出~ 移除链表元素 题述 给你一个链表的头节点 head 和一个整数 val &#xff0c;请…

基于python的在线学习与推荐系统

技术&#xff1a;pythonmysqlvue 一、系统背景 当前社会各行业领域竞争压力非常大&#xff0c;随着当前时代的信息化&#xff0c;科学化发展&#xff0c;让社会各行业领域都争相使用新的信息技术&#xff0c;对行业内的各种相关数据进行科学化&#xff0c;规范化管理。这样的大…

大模型知识库

一种利用 langchain 思想实现的基于本地知识库的问答应用&#xff0c;目标期望建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案。 1. 下载Langchain-chatchat git clone https://github.com/chatchat-space/Langchain-Chatchat/ 2. 下载大模型和embe…

从零开始学习在VUE3中使用canvas(一):实现一个基础的canvas画布

一、步骤 1.写一个canvas元素 2.获取虚拟dom 3.获取绘制环境 4.绘制想要的效果 5.在挂载后执行 二、代码 <template><div class"canvasPage"><!-- 写一个canvas标签 --><canvas class"main" ref"main"></canv…

StringTable(字符串常量池)

目录 String的基本特性 String的内存分配 字符串拼接操作 intern()的使用 String的基本特性 String&#xff1a;字符串&#xff0c;使用一对""引起来表示 String声明为final的&#xff0c;不可被继承 String实现了Serializable接口&#xff1a;表示字符串是支持…

Docker可视化容器管理工具(Portainer)

一、简介 Portainer 是 Docker 的轻量级&#xff0c;跨平台和开源管理 UI。Portainer 提供了 Docker 的详细概述&#xff0c;并允许您通过基于 Web 的简单仪表板管理容器&#xff0c;镜像&#xff0c;网络和卷。支持 GNU/Linux&#xff0c;Windows 和 Mac。 官网地址&#xf…

Python爬虫之Scrapy框架系列(24)——分布式爬虫scrapy_redis完整实战【XXTop250完整爬取】

目录&#xff1a; 每篇前言&#xff1a;1.使用分布式爬取豆瓣电影信息&#xff08;1&#xff09;settings.py文件中的配置&#xff1a;&#xff08;2&#xff09;spider文件的更改&#xff1a;&#xff08;3&#xff09;items.py文件&#xff08;两个项目一致&#xff01;&…

c语言(数据在内存中的存储)

1. 整数在内存中的存储 整数的2进制表⽰⽅法有三种&#xff0c;即原码、反码和补码 三种表⽰⽅法均有符号位和数值位两部分&#xff0c;符号位都是⽤0表⽰“正”&#xff0c;⽤1表⽰“负”&#xff0c;⽽数值位最 ⾼位的⼀位是被当做符号位&#xff0c;剩余的都是数值位。 正整…