Linux进程通信补充——System V通信

三、System V进程通信

​ System V是一个单独设计的内核模块;

​ 这套标准的设计不符合Linux下一切皆文件的思想,尽管隶属于文件部分,但是已经是一个独立的模块,并且shmid与文件描述符之间的兼容性做的并不好,网络通信使用的是文件的接口,所以System V标准慢慢地边缘化了,很难被整合进网络结构当中;

​ 不同进程看到同一份资源都是使用的key匹配的方式实现;

3.1共享内存

3.1.1原理

​ 由操作系统在内存中创建一段连续的空间,经过页表映射到共享区,给需要通信的用户层返回此空间的起始地址;这样就使得不同的进程看到同一份资源;

​ 通信准备工作,第一步申请空间;第二步将空间挂接到进程的共享区;

​ 通信结束工作,第一步去去关联;第二步释放共享内存;

​ 以上过程因为进程的独立性,必须交由操作系统来完成,需要使用系统调用接口;而且操作系统要对共享内存进行管理,有专门的结构体进行描述,憨厚用数据结构进行维护;

3.1.2系统调用接口
//1.创建一个共享内存
#include <sys/ipc.h>
#include <sys/shm.h>
int shmget(key_t key, size_t size, int shmflg);//创建共享内存的时候也要进行权限设计,即第三个参数设计IPC_CREAT|IPC_EXCL|0666
//第一个参数,操作系统要保证管理的每一个共享内存是唯一的;所以用key(具备唯一性的标识符)来创建共享内存并且使用key进行配对共享内存,来达到获取或者释放;key存放于操作系统创建的描述对象中;
//第二个参数是创建的空间大小。单位是字节,一般是4096的整数倍;
//第三个参数是共享内存的选项,IPC_CREAT and IPC_EXCL,IPC_EXCL不能单独使用;第三个选项一般有两个使用方式;方式一:IPC_CREAT,如果申请的共享内存不存在就创建,存在就获取;方式二:IPC_CREAT|IPC_EXCL,如果申请的共享内存不存在就创建,存在就出错返回;这种方式是为了保证刚创建的共享内存是新的;
//返回值是一个有效的共享内存标识符shmid,是在进程进行唯一性标识的;而key是操作系统使用的,进行唯一性标定的,返回给进程一个shmid;shmid其实就是一个数组,但是不符合文件的设计;
//2.释放共享内存,获取共享内存信息
#include <sys/ipc.h>
#include <sys/shm.h>
int shmctl(int shmid, int cmd, struct shmid_ds *buf);
struct shmid_ds {
    struct ipc_perm shm_perm;    /* Ownership and permissions */共享内存的权限
        size_t          shm_segsz;   /* Size of segment (bytes) */
    time_t          shm_atime;   /* Last attach time */
    time_t          shm_dtime;   /* Last detach time */
    time_t          shm_ctime;   /* Last change time */
    pid_t           shm_cpid;    /* PID of creator */
    pid_t           shm_lpid;    /* PID of last shmat(2)/shmdt(2) */
    shmatt_t        shm_nattch;  /* No. of current attaches */
    ...
};//此结构是内核中管理共享内存的子集;
//如下是权限的结构,key被保存在了此结构中
struct ipc_perm {
    key_t          __key;    /* Key supplied to shmget(2) */
    uid_t          uid;      /* Effective UID of owner */
    gid_t          gid;      /* Effective GID of owner */
    uid_t          cuid;     /* Effective UID of creator */
    gid_t          cgid;     /* Effective GID of creator */
    unsigned short mode;     /* Permissions + SHM_DEST and
                                           SHM_LOCKED flags */
    unsigned short __seq;    /* Sequence number */
};
Valid values for cmd are:
IPC_STAT(将内核中的属性拷贝到输出型参数)、IPC_RMID(标记共享内存为删除)、IPC_SET(设置属性);
//第一个参数是shmid;第二个参数是具体的控制方式,查看、修改属性;第三个参数是输出型参数,用来获取共享内存的部分属性;
3.1.3创建key
#include <sys/types.h>
#include <sys/ipc.h>
key_t ftok(const char *pathname, int proj_id);
//一套算法生成key并不会进内核进行查找;pathname和proj_id进行了数值计算,形成一个冲突概率率比较小的key;
//使用同一套算法,pathname,proj_id一定会生成同一个key;
//key是进程传递给操作系统,让操作系统生成唯一性的共享内存,或者操作系统用key进行判断是否允许使用共享内存通信;
3.1.4指令管理操作系统IPC资源
ipcs(ipc show) -m(memory)
#查看共享内存资源使用情况;
ipcrm -m shmid
#释放 shmid共享内存

在这里插入图片描述

3.1.5共享内存的权限问题
int shmget(key_t key, size_t size, int shmflg);
//创建共享内存的时候也要进行权限设计,即第三个参数设计IPC_CREAT|IPC_EXCL|0666
3.1.6注意事项

​ 1.共享内存一旦创建好就需要手动去释放,除非内核关闭;

​ 2.一个进程创建共享内存,一个获取使用共享内存;

​ 3.共享内存的大小建议是4096的整数倍;因为操作系统分配内存是按照page的倍数来的,即使申请4097大小,也还是会开辟2*4096的空间,只不过是第二个4096空间只允许使用1的大小;

​ 4.一个进程负责共享内存的申请和释放,另一个只是挂接和去关联就行;

​ 5.如果进程因为异常终止,就会导致共享内存没有释放,内存泄露;

3.1.7共享内存的挂接和去关联

​ 进程结束会–attach;

​ malloc是开辟的空间往往比申请的空间要大,是因为这部分额外的空间"cookie"记录了对开辟空间的管理信息

#include <sys/types.h>
#include <sys/shm.h>
void *shmat(int shmid, const void *shmaddr, int shmflg);
//和malloc类似,都是返回一个虚拟地址空间,然后触发缺页中断,建立映射;
//将共享内存挂接到进程地址空间的共享区
//第一个参数共享内存标识符;第二个参数表示的是共享区的具体位置,一般是设为NULL;第三个参数可以自己设置权限,也可以设置0,使用共享内存的默认权限;
//返回值是挂接到共享区的具体位置,
int shmdt(const void *shmaddr);
//进程和共享内存去关联,由于操作系统对共享内存进行了管理,知道大小,随意只需要起始地址就可以释放,类似free;
3.1.8通信

​ 共享内存通信是不需要像管道一样刷新文件到页缓冲区的,因为直接挂接到了虚拟地址空间,所以用户层是直接可以使用的;直接将挂接的地址强转成char*,当成字符串使用,也不需要语言层缓冲区,不需要调用系统调用;每次从起始位置写入和读取;

char *fgets(char *s, int size, FILE *stream);
//读取之后会在最后加\0;
3.1.9特性

​ 1.没有同步互斥;

​ 2.共享内存是所有进程间通信方式最快的,因为拷贝少,系统调用少;

​ 3.共享内存的数据需要用户自己维护,是最原始的缓冲区;

3.1.10使用管道对共享内存进行同步和互斥

​ 两个进程1号读,2号写;2号写完后继续使用管道发送提示,而使用了管道的1号进程,就不会立刻读取,而是等先读到管道数据,才继续读取共享内存的数据;即双方使用共享内存通信中间加入管道通信,借助管道的同步和互斥进行通信;

​ 共享内存的通信速度非常快,对于大文件效率高;可以自己实现同步和互斥,也可以借助管道的同步互斥机制,发送提示符实现;

3.2信号量和消息队列

3.2.1消息队列
3.2.1.1原理

​ 操作系统在内核中管理消息队列,开辟了队列空间,使得通信双方看到同一份资源;而管道和共享内存使用的是文件页缓冲区和内存块;

​ 通信的要求是:1.必须让不同的进程看到同一份资源;2.允许不同的进程向内核发送带类型(区分发送给哪一个进程)的数据块,然后将数据块炼链入消息队列;即ab两个进程以发送数据块形式;

在这里插入图片描述

3.2.1.2创建和控制接口
//创建一个消息队列
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
int msgget(key_t key, int msgflg);
//key和msg的选项和共享内存一样;
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
int msgctl(int msqid, int cmd, struct msqid_ds *buf);
//msqid和cmd的选项和共享内存的一样
struct msqid_ds {
    struct ipc_perm msg_perm;     /* Ownership and permissions */使用了组合的方式,而不是继承
    time_t          msg_stime;    /* Time of last msgsnd(2) */
    time_t          msg_rtime;    /* Time of last msgrcv(2) */
    time_t          msg_ctime;    /* Time of last change */
    unsigned long   __msg_cbytes; /* Current number of bytes in
                                                queue (nonstandard) */
    msgqnum_t       msg_qnum;     /* Current number of messages
                                                in queue */
    msglen_t        msg_qbytes;   /* Maximum number of bytes
                                                allowed in queue */
    pid_t           msg_lspid;    /* PID of last msgsnd(2) */
    pid_t           msg_lrpid;    /* PID of last msgrcv(2) */
};
The ipc_perm structure is defined as follows (the highlighted fields are settable using IPC_SET):
struct ipc_perm {
    key_t          __key;       /* Key supplied to msgget(2) */
    uid_t          uid;         /* Effective UID of owner */
    gid_t          gid;         /* Effective GID of owner */
    uid_t          cuid;        /* Effective UID of creator */
    gid_t          cgid;        /* Effective GID of creator */
    unsigned short mode;        /* Permissions */
    unsigned short __seq;       /* Sequence number */
};
3.2.1.3发送和读取接口
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);
//第一个参数是消息队列id,第二个参数是消息队列数据块起始地址,第三个数据是数据块大小,第四个参数默认设置为0,意思是阻塞方式,IPC_NOWAIT非阻塞的方式;
struct msgbuf {
    long mtype;       /* message type, must be > 0 */类型
    char mtext[1];    /* message data */内容,但是大小为1字节,所以需要自己定义一个数据块对象,保证第一个数据是类型,第二个数据是内容;
};
ssize_t msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg);
//第一个参数是从哪一个消息队列获取,第二和第三个参数是输出型参数作为缓冲区,第四个参数是根据类型读取数据块,第5个参数和发送的一样,阻塞和非阻塞;
3.2.1.4指令管理IPC资源
ipcs -q
//查看消息队列资源
ipcrm -q msqid
//释放消息队列

在这里插入图片描述

​ used-bytes是总字节数,messages是数据块数;

3.2.2信号量
3.2.2.1原理和概念

1.数据不一致问题,需要解决

​ a进程未写入完,b进程直接读取,导致双方收发数据不完整;管道不存在这样的问题,因为有原子性保证和同步互斥;但是共享内存是最原始的缓冲区,没有任何的保护机制;

2.共享资源

​ 两个进程看到的同一份资源是共享资源,如果不加保护就会导致数据不一致问题;解决这种问题需要使用加锁的方式实现;加锁是为了实现互斥访问;默认打开的3个文件流就是共享资源,不搬家任何保护;

3.互斥

​ 互斥访问,任何时刻只允许一个执行流访问共享资源;实现互斥就是将共享资源变成临界资源;如ATM取款场景;

4.临界资源

​ 共享的任何时刻只允许一个执行流访问的资源叫做临界资源;管道就是临界资源;一般是内存空间;而共享内存,消息队列等都是不加保护的共享资源;语言层使用的主要是内存资源,而CPU的视角下,操作系统管理的进程是运行在CPU上的,是CPU的资源;

5.临界区

​ 即真正访问临界资源的代码;

3.2.2.2创建和控制接口
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
int semget(key_t key, int nsems, int semflg);
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
int semctl(int semid, int semnum, int cmd, ...);
struct semid_ds {
    struct ipc_perm sem_perm;  /* Ownership and permissions */
    time_t          sem_otime; /* Last semop time */
    time_t          sem_ctime; /* Last change time */
    unsigned long   sem_nsems; /* No. of semaphores in set */
};

The ipc_perm structure is defined as follows (the highlighted fields are settable using IPC_SET):

struct ipc_perm {
    key_t          __key; /* Key supplied to semget(2) */
    uid_t          uid;   /* Effective UID of owner */
    gid_t          gid;   /* Effective GID of owner */
    uid_t          cuid;  /* Effective UID of creator */
    gid_t          cgid;  /* Effective GID of creator */
    unsigned short mode;  /* Permissions */
    unsigned short __seq; /* Sequence number */
};

3.3System V在内核中的数据结构设计

​ 在操作系统内所有的进程间通信IPC资源被i整合在IPC模块当中;

在这里插入图片描述

​ 上述结构里的entries指针指向了一个数组

在这里插入图片描述

​ 数组的第一个元素表示元素的个数,第二个元素是kernel_ipc_perm对应的指针数组,是一个柔性数组,可以动态扩展数组的大小;

在这里插入图片描述

​ 在操作系统中System V的三种通信方式,都创建了内核结构,这些内核结构的第一个属性都是struct ipc_perm的结构对象,然后使用数组的方式进行组织,而这个数组是struct ipc_perm *array[],存放了这三种内核结构的第一个属性的地址,这样就间接地将三类结构的首地址组织起来了,形成了类似二维数组的结构;

​ 即不同通信方式的描述不同,组织方式转化成了对数组的增删查改;

​ 当每一个进程传入key在操作系统内部进行比对时,进行创建或者获取,不存在创建一个结构,返回数组下标即xxxid;即本质上除去不一样的部分,三种通信方式的结构是一样的,统一成了对ipc资源的管理;为了区分三种通信方式的不同,为每一个通信方式增加了自己的属性;

​ 访问不同的通信结构时,使用强制类型转换即可实现访问;

​ kernel_ipc_perm结构里可以添加一种类型标志位,使用枚举常量的方式区分不同的类型;

​ 这个技术就类似于c++当中的多态,基类ipc_perm,其他三种通信结构是派生类,其是这就是c语言的多态;

​ id_ary数组不隶属于任何进程,不像files_struct里面的fd_array是属于task_struct的,是一个独立的模块里的结构,所以与文件描述符的关系不大,不兼容,此模块逐渐地被边缘化了,因为此模块无法和进程相关联,自己能和内存相关联,而文件是既可以和进程关联也可以和内存关联;

​ xxxid数组下标是线性递增的,当变成最大值时,会回绕到0;实际上并不会开辟很大的数组,而且每次数组都是从下标0开始,类似与起始计数器的机制,将数字转化成对应的数组下标;

在这里插入图片描述

消息类型和消息大小就是从如下结构拷贝的;然后使用了双链表的形式维护了消息队列

struct msgbuf {
    long mtype;       /* message type, must be > 0 */类型
    char mtext[1];    /* message data */内容,但是大小为1字节,所以需要自己定义一个数据块对象,保证第一个数据是类型,第二个数据是内容;
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/467999.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

TCL管理Vivado工程

文章目录 TCL管理Vivado工程1. 项目目录2. 导出脚本文件3. 修改TCL脚本3.1 project.tcl3.2 bd.tcl 4. 工程恢复 TCL管理Vivado工程 工程结构 1. 项目目录 config: 配置文件、coe文件等。doc: 文档fpga: 最后恢复的fpga工程目录ip: ip文件mcs: bit流文件等,方便直接使用src: .…

蓝桥杯物联网竞赛_STM32L071_12_按键中断与串口中断

按键中断&#xff1a; 将按键配置成GPIO_EXTI中断即外部中断 模式有三种上升沿&#xff0c;下降沿&#xff0c;上升沿和下降沿都会中断 external -> 外部的 interrupt -> 打断 trigger -> 触发 detection -> 探测 NVIC中将中断线ENABLE 找接口函数 在接口函数中写…

UE 蓝图场景搭建全流程

点个关注不迷人&#xff0c;可私信帮您解决问题&#xff1a; 学习的知识点&#xff1a; 1、cityEngine 2、bleneder 3、M3工具 4、Uv 基础学习 5、Gameplay 框架 内容很长详情关注&#xff0c;回复ue 获取UE 全流程免费视频教程

OpenCV 单目相机标定

文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 单目相机的标定过程与双目相机的标定过程很类似,具体过程如下所述: 1、首先我们需要获取一个已知图形的图像(这里我们使用MATLAB所提供的数据)。 2、找到同名像点(匹配点),这里主要是探测黑白格子之间的角点…

本地虚拟机平台Proxmox VE结合Cpolar内网穿透实现公网远程访问

&#x1f525;博客主页&#xff1a; 小羊失眠啦. &#x1f3a5;系列专栏&#xff1a;《C语言》 《数据结构》 《C》 《Linux》 《Cpolar》 ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&…

【数据挖掘算法与应用】——数据挖掘导论

数据挖掘导论 导入一、为什么要进行数据挖掘1.数据爆炸但知识贫乏2.数据在爆炸式增长3.数据安全4.从商业数据到商业智能的进化5.KDD的出现 二、什么是数据挖掘1.广义技术角度的定义2.狭义技术角度的定义3.商业角度的定义4.数据挖掘与其他科学的关系5.数据挖掘对象6.挖掘到什么知…

数据结构——B树和B+树

数据结构——B树和B树 一、B树1.B树的特征2.B树的插入操作3.B树的删除操作4.B树的缺点 二、B树B树的特征 平衡二叉树或红黑树的查找效率最高&#xff0c;时间复杂度是O(nlogn)。但不适合用来做数据库的索引树。 因为磁盘和内存读写速度有明显的差距&#xff0c;磁盘中存储的数…

[HackMyVM]靶场 Zon

kali:192.168.56.104 主机发现 arp-scan -l # arp-scan -l Interface: eth0, type: EN10MB, MAC: 00:0c:29:d2:e0:49, IPv4: 192.168.56.104 Starting arp-scan 1.10.0 with 256 hosts (https://github.com/royhills/arp-scan) 192.168.56.1 0a:00:27:00:00:05 (Un…

Python和R的区别是什么,Python与R的应用场景是什么?

如果你这么问&#xff0c;那么你可能正站在数据科学的起点。对于志在成为数据专业人员的你来说&#xff0c;学习编程是无疑的。我想行你早就听过Python 与R的比较之声&#xff0c;并在选择中感到困惑。在此&#xff0c;我想说&#xff0c;也算是一种安慰吧&#xff1a;对于语言…

利用textarea和white-space实现最简单的文章编辑器 支持缩进和换行

当你遇到一个非常基础的文章发布和展示的需求&#xff0c;只需要保留换行和空格缩进&#xff0c;你是否会犹豫要使用富文本编辑器&#xff1f;实际上这个用原生的标签两步就能搞定&#xff01; 1.直接用textarea当编辑器 textarea本身就可以保存空格和换行符&#xff0c;示例如…

主存中存储单元地址的分配

主存中存储单元地址的分配 为什么写这篇文章? 因为我看书中这部分时&#xff0c;看到下面的计算一下子没反应过来&#xff1a; 知识回顾&#xff08;第1章&#xff09; 计算机系统中&#xff0c;字节是最小的可寻址的存储单位&#xff0c;通常由8个比特&#xff08;bit&…

IDEA直接打包Docker镜像

以下为使用IDEA打包Docker镜像并推送到远程仓库&#xff08;使用Windows打包Docker镜像并推送到远程仓库&#xff09;教程 1 安装Docker Desktop 下载地址&#xff1a;https://www.docker.com/products/docker-desktop/ 安装成功后&#xff0c;可在cmd查看版本号 2 启动Do…

天眼销批量查询功能上线

天眼销是一款提供企业线索的产品&#xff0c;致力于帮助客户获取最新的企业联系方式、工商信息等关键数据。 数据库收录全国 3.3亿及以上企业(含个体)线索&#xff0c;涵盖企业名称、企业状态、注册时间、注册资本、经营范围、法人信息、联系方式等维度&#xff0c;为用户提供…

安卓上最好用的Linux终端仿真软件:Termux 从入门到精通深度剖析

安卓上最好用的Linux终端仿真软件&#xff1a;Termux 从入门到精通深度剖析 前言引入安装Termux初识Termux界面介绍 基本使用快速编辑多会话更多菜单 高级操作termux.properties配置文件&#xff08;修改后需要重启termux生效&#xff09;通用设置General全屏模式Fullscreen mo…

机器人在果园内行巡检仿真

文章目录 创建工作空间仿真果园场景搭建小车模型搭建将机器人放在仿真世界中创建工作空间 mkdir -p ~/catkin_ws/src cd ~/catkin_ws仿真果园场景搭建 cd ~/catkin_ws/src git clone https://gitcode.com/clearpathrobotics/cpr_gazebo.git小车模型搭建 DiffBot是一种具有两个…

使用RabbitMQ,关键点总结

文章目录 1.MQ的基本概念2.常见的MQ产品3.MQ 的优势和劣势3.1 优势3.2 劣势 4.RabbitMQ简介4.1RabbitMQ 中的相关概念 1.MQ的基本概念 MQ全称 Message Queue&#xff08;消息队列&#xff09;&#xff0c;是在消息的传输过程中保存消息的容器。多用于分布式系统之间进行通信。…

万界星空科技WMS仓储管理包含哪些具体内容?

wms仓库管理是通过入库业务、出库业务、仓库调拨、库存调拨和虚仓管理等功能&#xff0c;综合批次管理、物料对应、库存盘点、质检管理、虚仓管理和即时库存管理等功能综合运用的管理系统&#xff0c;有效控制并跟踪仓库业务的物流和成本管理全过程&#xff0c;实现完善的企业仓…

C语言 02 安装

C 语言的编译器有很多&#xff0c;其中最常用的是 GCC&#xff0c;这里以安装 GCC 为例。 Windows 这里以 Windows 11 为例 官方下载地址&#xff1a;https://www.mingw-w64.org/ 选择 Downloads 选择 Windows 的 GCC 环境 MingW-W64-builds 选择 GitHub 根据操作系统位…

堆排序(向下调整法,向上调整法详解)

目录 一、 二叉树的顺序结构 二、 堆的概念及结构 三、数组存储、顺序存储的规律 此处可能会有疑问&#xff0c;左右孩子的父节点计算为什么可以归纳为一个结论了&#xff1f; 四、大小堆解释 五、大小堆的实现&#xff08;向上和向下调整法&#xff09; 5.11向上调整法…

分布式事务的解决方案--Seata架构

一、Seata的XA模式 二、AT模式原理 三、TCC模式原理 四、MQ分布式事务 异步&#xff0c;非实时&#xff0c;实现最终的一致性。 四、分布式事务的解决方案