【C++初阶】第七站:string类的初识(万字详解、细节拉满)

前言:

📍本文知识点:string的初识

本专栏:C++

目录

一、什么是STL

二、STL的六大组件

三、STL的缺陷

四、为什么学习string类?

五、标准库中的string类

1、string类(了解)

2、string类的常用接口说明(最常用的接口)

A. string类对象的常见构造

B.string类的成员函数的使用

1、for+operator [ ]

2、范围for遍历

3、迭代器遍历

反向迭代器

const修饰的迭代器

4.💥取字符串💥

C.string类对象的容量操作

size、length、capacity、clear 、max_size,:

❓来写一道题:387. 字符串中的第一个唯一字符

reserve 

resize 

at 下标自增

D.string类对象的修改操作  

push_back、append、+=、+:

assgin

insert

erase

replace

swap

find、rfind、substr

取出url协议、域名、uri:

find_first_of 和 find_first_not_of


一、什么是STL

STL(standard template libaray-标准模板库)是C++标准库的重要组成部分不仅是一个可复用的组件库,而且是一个包罗数据结构与算法的软件框架

二、STL的六大组件

三、STL的缺陷

        1. STL库的更新太慢了。这个得严重吐槽,上一版靠谱是C++98,中间的C++03基本一些修订。C++11出来已经相隔了13年,STL才进一步更新。

        2. STL现在都没有支持线程安全。并发环境下需要我们自己加锁。且锁的粒度是比较大的。

        3. STL极度的追求效率,导致内部比较复杂。比如类型萃取,迭代器萃取。

        4. STL的使用会有代码膨胀的问题,比如使用vector/vector/vector这样会生成多份代码,当然这是模板语法本身导致的。

四、为什么学习string类?

1、C语言中的字符串

        C语言中,字符串是以'\0'结尾的一些字符的集合,为了操作方便,C标准库中提供了一些str系列的库函数,但是这些库函数与字符串是分离开的,不太符合OOP的思想,而且底层空间需要用户自己管理,稍不留神可能还会越界访问。

2、面试题 ( 暂不做讲解)
字符串相加
      在OJ中,有关字符串的题目基本以string类的形式出现,而且在常规工作中,为了简单、方便、快捷,基本都使用string类,很少有人去使用C库中的字符串操作函数

五、标准库中的string

1、string(了解)

string类的文档介绍

📌总结:

1. string是表示字符串的字符串类

2. 该类的接口与常规容器的接口基本相同,再添加了一些专门用来操作string的常规操作。

3. string在底层实际是:

basic_string模板类的别名,typedef basic_string<char, char_traits, allocator> string;

4. 不能操作多字节或者变长字符的序列。

注意:
使用string类时,必须包含#include头文件以及using namespace std;

2、string类的常用接口说明(最常用的接口)

A. string类对象的常见构造

示例:
#include<iostream>
#include<string>
using namespace std;

void test_string1()
{
	//空构造函数
	string s1;
	cout << s1 << endl; 
	//常量字符串                                            //(优化成直接构造)
	string s2("hello");//等价<-->string s2 = "hello world";//构造+拷贝构造 
	cout << s2 << endl;
	//创建一个包含 n 个重复字符 '#' 的字符串
	string s3(5, '#');
	cout << s3<<endl;
	
	//拷贝构造函数,用以创建一个已存在字符串对象的副本
	string s4("Copy this");
	string s5(s4);  // s5 是 s4 的副本
	cout << s5<<endl;  // 输出 "Copy this"

	string s6 = s2 + s2;// + 运算符重载,构造,拷贝构造
	cout << s6 << endl;
		
	//将现有的字符串 s2 和字面量字符串 "我来了" 进行拼接
	string s7 = s2 + "我来了";//+ 运算符重载,字符串拼接,拷贝构造函数
	cout << s7 << endl;
}
int main()
{
	test_string1();
}

B.string类的成员函数的使用

上面知道了string类对象如何初始化,那么我们想要遍历string该怎么遍历呢?
以下这个表分别对应下文的三种遍历方式:
string中元素访问及遍历代码演示
1、for+operator [ ]
[] + 下标访问:读取 / 修改
void test_string2()
{
	string s1 = "hello world";

	//for形式遍历
	//遍历string
	for (size_t i = 0; i < s1.size(); i++)
	{
		//读
		cout << s1[i] << " ";
	}
	cout << endl;
	//s1里面的每一个字符的对应的十进制都+1,之后原本字符会变成新字符
	for (size_t i = 0; i < s1.size(); i++)
	{
		//写
		s1[i]++;
	}
	cout << s1 << endl;
}

2、范围for遍历
auto:修改+读取
void test_string3()
{
    //编译时编译器替换成迭代器,范围for的底层跟迭代器是完全类似的
	//范围for
	//读
	for (auto ch : s1)
	{
		ch++;
	}
	cout << endl;	
	//写
	for (auto& ch : s1)
	{
		ch++;
	}
	cout << endl;
	cout << s1 << endl;
}

3、迭代器遍历

使用迭代器遍历我们需要了解String中的Iterators成员函数:

begin():返回一个指向字符串的第一个字符的迭代器

 

end():返回一个迭代器,该迭代器指向了字符串的最后一个字符的下一个位置( '\0' )

迭代器:像指针一样的东西,有可能是指针,也有可能不是指针,但使用方法是像指针一样的东西

void test_string2()
{
	string s1 = "hello world"
	
    //string不能省掉,省掉就报错
	string::iterator it = s1.begin();//返回一个迭代器,指向字符串的第一个字符
	
    //推荐玩法,通用--> !=
    while (it != s1.end())//返回一个指向字符串的最后一个字符的迭代器
	{
		//读
		cout << *it << " ";
		++it;
	}
	it = s1.begin();
	while (it != s1.end())
	{
		//写
		*it = '#';
		++it;
	}
	cout << endl;
	cout << s1 << endl;
}

💨注意:while循环条件这里可以用 < 吗?

可以但是不建议:

(为什么可以,因为string的物理空间是连续的,说明地址是从小到大变化的,当然可以使用< 比较)      所以说,list、vector这样的连续的物理空间的数据结构,可以使用数组的方式遍历

关于迭代器:

而string、list、vector的迭代器都是通用的 ,都可以用迭代器遍历的方式遍历元素,包括以后的树形结构、哈希结构,都可以使用迭代器遍历

总结:在C++标准模板库(STL)中,所有标准容器均支持迭代器

🎯但是对于list来说,它的物理空间并不一定是连续的它是由一个带哨兵位的头节点,外加一个个的小节点构成:

所以list的物理空间不一定是连续的,lit指向的字符串开头的地址不一定小于end指向的地址:

总结:🚩

所以!=才是通用的。

示范代码:

void test_string2()
{
	list表示使用STL中的list容器模板类。
	<int> 是模板参数,表明列表中存储的数据类型是整数(int)。
	lt 是声明的list对象名称,即创建了一个可以存放整数的双向链表。

	list<int>lt;
	lt.push_back(1);
	lt.push_back(2);
	lt.push_back(3);
	lt.push_back(4);

	//迭代器遍历
	list<int>::iterator lit = lt.begin();
	while (lit != lt.end())
	{
		cout << *lit << " ";
		++lit;
	}
	cout << endl;
}

反向迭代器
  • 有正向迭代器,那么有反向迭代器吗?

rebegin()返回一个反向的迭代器,该迭代器指向字符串的最后一个字符

rend():返回一个反向迭代器,该迭代器指向字符串的第一个字符前面的理论元素(下标为-1)。

void test_string3()
{
	string s1("hello world");
	
    string::reverse_iterator rit = s1.rbegin();
    //等价 👇
	//auto rit = s1.rbegin();
	while (rit != s1.rend())
	{
		cout << *rit << " ";
		++rit;
	}
	cout << endl;
	 
}

我们也可以使用auto来自动判断类型:

const修饰的迭代器

被const修饰的迭代器 -- 只能读,不能写,因为它是给const对象访问的

//const string
void func(const string& s)
{
	//string::const_iterator it = s.begin();
	auto it = s.begin();
	while (it != s.end())
	{
		//不支持写
		//*it = 'a';

		//读
		cout << *it << " ";
		++it;
	}
	cout << endl;

	//string::const_reverse_iterator rit = s.rbegin();
    auto rit = s.rbegin();
	while (rit != s.rend())
	{
		cout << *rit << " ";
		++rit;
	}
	cout << endl;
}
void test_string4()
{
	string s1("apple pie");
	func(s1);
}

执行:

我们当然也可以使用auto简化代码

以下均是不能通过的情况:

如果传参的时候写成被const修饰的参数,其他代码不改动,那么编译就不会通过了:

因为s1传参到s是const对象,const对象要用const迭代器,只读,不能写

红色框是修改之后的结果,蓝色框说明该迭代器只能读不能写

总计:四种迭代器

4.💥取字符串💥

假设这时候我要从一个字符串里面取需要的字符串,我们需要用到打红色√(重点)

需要注意的以及横线划着那条成员函数,蓝色打勾

        但如果我这个字符串很长,那需要我从头到尾去数这个字符串的长度,然后把大小填到参数位那吗?这样的处理方法未免太繁琐。这时候引入了一个参数npos

比如说以下这个,直接从主串的第6个字符的后一个字符开始取子串,不填入参数,默认就帮你把后面的子串都取完,以下这两种写法的功能都十分相似

另外还有需要注意的知识点是:

赋值运算符重载:

举例的代码:

void test_string4()
{
	string s1("apple pie,taste good");
	string s1("hello world");

	string s2(s1);
	cout << s2 << endl;
	cout << "-------------------------------------" << endl;

	string s3(s1, 6, 5);
	cout << s3 << endl;
	cout << "-------------------------------------" << endl;

	string s4(s1, 6, 3);
	cout << s4 << endl;
	cout << "-------------------------------------" << endl;
	//string s1("apple pie,taste good");
	string s5(s1, 6 );
	cout << s5 << endl;
	cout << "-------------------------------------" << endl;

	string s6(s1, 6, s1.size() - 6);// s1.size() - 6:子串的长度,从第七个位置的字符开始
	cout << s6 << endl;
	cout << "-------------------------------------" << endl;

	string s7(10, 'a');
	cout << s7 << endl;
	cout << "-------------------------------------" << endl;

	string s8(++s7.begin(), --s7.end());
	cout << s8 << endl;
	cout << "-------------------------------------" << endl;

	s8 = s7;
	s8 = "xxx";
	s8 = 'y';
	cout << s8 << endl;
}

C.string类对象的容量操作

string容量相关方法使用代码演示

注意

1. size()与length()方法底层实现原理完全相同,引入size()的原因是为了与其他容器的接口保持一致,一般情况下基本都是用size()

2.clear()只是将string中有效字符清空,不改变底层空间大小

3.resize(size_t n)与 resize(sizet n,char c)都是将字符串中有效字符个数改变到n个,

不同的是当字符个数增多时:

resize(n)用0来填充多出的元素空间,

resize(size tn,char c)用字符c来填充多出的元素空间。

注意:resize在改变元素个数时,如果是将元素个数增多,可能会改变底层容量的大小,如果是将元素个数减少,底层空间总大小不变。

4.reserve(size_tres_arg=0):为string预留空间,不改变有效元素个数,当reserve的参数小于string的底层空间总大小时,reserver不会改变容量大小。

size、length、capacity、clear 、max_size,:

建议使用size:size比length更具有通用性,length只能计算线性的数据结构

void test_string5()
{
	string s1("hello world");
	cout << s1.size() << endl;//返回字符串有效字符长度
	cout << s1.length() << endl;//返回字符串有效字符长度
	cout << s1.capacity() << endl;//返回空间总大小

	s1.clear();//清空有效字符,注意:不释放空间
	cout << s1.size() << endl;//返回字符串有效字符长度
	cout << s1.capacity() << endl;//返回字符串有效字符长度
	cout << s1.max_size() << endl;//返回容器所能容纳的最大元素数量(这个值一般是固定的)
}

❓来写一道题:387. 字符串中的第一个唯一字符
class Solution {
public:
    // 定义一个成员函数firstUniqChar,它接收一个字符串s作为参数,并返回一个整数
    // 这个整数代表字符串s中第一个唯一(只出现一次)字符的索引,如果不存在这样的字符,则返回-1
    int firstUniqChar(string s) {
        // 创建一个大小为26的整型数组countA,用于存储'a'到'z'每个字母出现的次数
        int countA[26] = {0};

        // 首先遍历字符串s中的每个字符
        for(auto ch: s)
        {
            // 把当前字符ch转换为其在小写字母表中的相对位置(例如,'a'的位置是0,'b'的位置是1,依此类推)
            // 通过 ch - 'a' 计算得出
            int index = ch - 'a';
            
            // 把该位置的计数值加1,表示这个字母出现了一次
            countA[index]++;
        }

        // 再次遍历字符串s中的每个字符
        for(int i = 0; i < s.size(); ++i)
        {
            // 获取当前字符s[i]在小写字母表中的相对位置
            int index = s[i] - 'a';

            // 检查此字符在countA数组中的计数值是否为1
            // 如果是1,说明这个字符在字符串s中只出现了1次,是唯一的
            if(countA[index] == 1)
            {
                // 返回当前字符s[i]在字符串s中的索引
                return i;
            }
        }

        // 如果遍历完整个字符串都没有找到只出现一次的字符,则返回-1表示不存在这样的字符
        return -1;
    }
};

reserve 

1.如果 n 大于当前字符串容量(capacity),则该函数会导致容器将其容量增加到 n 个字符(或更大)。               -->       也就是扩到n或者>n

2.在所有其他情况下,它被视为一个非约束性的缩减字符串容量请求:容器实现可以自由优化,保持字符串的容量大于n。

3.此函数对字符串长度没有影响,也无法更改其内容。

(当n小于对象当前的capacity时,什么也不做)

n大于当前字符串容量的测试:

n小于当前字符串的测试:

windows和Linux的增容规则的测试:

1.windows下的增容规则:

        reserve开空间的对比,未使用reserve

可以看到windows下的增容规则大约是1.5倍的增容

        reserve开空间的对比,使用reserve

                                                        💥reserve的意义: 

        reserve价值,确定大概知道要多少空间,提前开好,减少扩容,提高效率

2.Linux下的增容规则:

可以看到Linux下的增容规则是2倍增容

测试代码: 

#include<iostream>
#include<string>
using namespace std;
void test_string6()//第二次
{
	string s;
	//s.reserve(100);
	size_t old = s.capacity();
	for (size_t i = 0; i < 100; i++)
	{
		s.push_back('x');
		if (s.capacity() != old)
		{
			cout << "扩容:" << s.capacity() << endl;
			old = s.capacity();
		}
	}
	//s.reserve(10);
	cout << s.capacity() << endl;
}

resize 

1.如果n小于当前字符串的长度,则将当前值缩短为前n个字符,删除第n个字符之后的字符。

2.如果n大于当前字符串长度,则扩展当前内容,在字符串末尾插入任意数量的字符,使长度达到n。如果指定了c,则新元素初始化为c的副本,否则为值初始化的字符(空字符) ---> '\0'。

图解: 

n大于当前字符串长度测试:

size < resize < capacity                                不使用字符参数:

size < resize < capacity                                  使用字符参数:

resize > capacity                                           使用字符参数:

n小于当前字符串长度测试:

对于空字符串,若给出n的值,则会初始化到第n个字符(下标要 -1 )

测试代码:

void test_string7()
{
	string s1("hello world");
	cout << s1 << endl;
	cout << s1.size()<< endl;
	cout << s1.capacity() << endl;

	//s1.resize(13);//将size扩到13,原本size是11,剩下的两个字符补'\0',加上末尾的'\0'(调试看不见),3个'\0'
	s1.resize(13,'x');//将size扩到13,不够的话补两个'x'
	s1.resize(20, 'x');//补9个x,因为原本size是11+9个'x'是20字符
	cout << s1 << endl;
	cout << s1.size() << endl;
	cout << s1.capacity() << endl;

	s1.resize(5);//保留五个字符
	cout << s1 << endl;
	cout << s1.size() << endl;
	cout << s1.capacity() << endl;

	//对于string来说,可能会使用到resize的场景
	string s2;
	s2.resize(10, '#');
	cout << s2 << endl;
	cout << s2.size() << endl;
	cout << s2.capacity() << endl;
}

at 下标自增

两种:①数组 ②at:

代码:

void test_string7()
{
	string s2;
	s2.resize(10, '#');
	cout << s2 << endl;
	cout << s2.size() << endl;
	cout << s2.capacity() << endl;

	//作用是一样的,都是对s2的第一个字符(下标为0的位置)执行自增操作。
	//因为s2的第一个字符是#,其ASCII码值为35,
	//在执行自增后变为ASCII码值36对应的字符,即$。
	s2[0]++;
	s2.at(0)++;//作用和上面是一样的
	cout << s2 << endl;
}
int main()
{
	test_string7();
}

D.string类对象的修改操作  

​​​​​​string中插入和查找等使用代码演示

注意

1. string尾部追加字符时,s.push_back(c) / s.append(1, c) / s += 'c'三种的实现方式

差不多,一般情况下string类的+=操作用的比较多+=操作不仅可以连接单个字符,还可以连接字符串。

2. string操作时,如果能够大概预估到放多少字符,可以先通过reserve把空间预留好。

push_back、append、+=、+:

代码:

void test_string8()
{
	string ss("world");// 创建一个字符串ss,初始化为"world"
	string s;// 创建一个新的字符串s,初始为空
	// 使用push_back方法向字符串s的末尾添加单个字符'#',不是完整的字符串
	s.push_back('#');//添加字符,不是字符串
	s.append("world");// 使用append方法将字符串"world"追加到字符串s的末尾
	s.append(ss);//再次使用append方法将字符串ss(内容也为"world")追加到字符串s的末尾
	cout << s << endl;
	
	// 使用"+"运算符重载,分别将字符 '#' 和字符串 "hello" 追加到字符串s的末尾
	s += '#';
	s += "hello";
	s += ss;
	cout << s << endl;

	// 使用"+"运算符重载创建新的字符串对象ret1和ret2
    // 将字符串ss与字符 '#' 连接起来赋值给ret1
	string ret1 = ss + '#';
	// 将字符串ss与字符串 "hello" 连接起来赋值给ret2
	string ret2 = ss + "hello";
	cout << ret1 << endl;
	cout << ret2 << endl;
}

assgin

void test_string9() {
	// 创建一个初始内容为"xxxxxxx"的字符串str
	string str("xxxxxxx");

	// 创建一个基础字符串base,
	string base = "The quick brown fox jumps over a lazy dog.";

	// 使用assign方法将base的全部内容赋给str,替换str原来的内容
	str.assign(base);
	// 输出赋值后str的内容
	cout << str << '\n';

	// 第二种用法:使用assign方法从base的第5个字符开始截取10个字符,并将这10个字符赋给str
	str.assign(base, 5, 10);
	// 输出截取并赋值后str的内容
	cout << str << '\n';
}

insert

void test_string10()
{
//接口设计复杂繁多,需要时查一下文档即可
	
	//下面两种写法都是头插 
	string str("hello world");
	str.insert(0,3,'x');//表示在字符串的起始位置插入
	cout << str << endl;
	str.insert(str.begin(), '#');
	cout << str << endl;

}

erase

void test_string10()
{
	string str1("hello world");
	str1.erase(5);//删至5个字符:hello后面的全删掉
	cout << str1 << endl;
	
    string str2("hello world");
	str2.erase(5,2);//从第6个位置开始删掉,并删掉下标为6,7的字符
	cout << str2 << endl;

replace

对于replace来说,第一个参数传入pos的位置,第二个参数就是你想要替换的字符个数,第三个参数是你想替换的内容

从以下的示例可以看出:如果第二个参数给多给少都会影响最终打印:多了就会替换掉原来的字符串,少了就会挪动数据 

代码:

void test_string10()
{
    string s1("hello world");
	s1.replace(5,1,"%%20");
	cout << s1 << endl;
	
	string s2("hello world");
	s2.replace(5, 3,"%%20");
	cout << s2 << endl;
	
	string s3("hello world");
	s3.replace(5, 4,"%%20");
	cout << s3 << endl;
}

🚩总结:

insert/erase/replace能不用就尽量不用,因为他们都涉及挪动数据,效率不高
接口设计复杂繁多,需要时查一下文档即可

swap

   swap 成员函数通常比直接拷贝数据更高效,因为它可能仅交换内部指针和一些元数据,而无需复制整个字符串内容。

s3遍历s2,s3遇到空格替换成20%,其他位置不变,之后交换s2和s3的地址:

void test_string10()
{
    //空格替换成20%
	string s2("The quick brown fox jumps a lazy dog.");
	string s3;
	for (auto ch : s2)
	{
		if (ch != ' ')
		{
			s3 += ch;
		}
		else
		{
			s3 += "20%";
		}
	}

	//这两个是深拷贝:
	s2 = s3;
	s2.assign(s3);
	
	printf("s2:%p\n", s2.c_str());
	printf("s3:%p\n", s3.c_str());

	
	//swap(s2, s3);//这个要调用三次深拷贝
	s2.swap(s3);//其实本质是调用了swap(s2,s3)

	printf("s2:%p\n", s2.c_str());
	printf("s3:%p\n", s3.c_str());

	cout << s2 << endl;
}

以上例子也用到了c_str。

c_str

find、rfind、substr

find

这里我们需要注意find的返回值:第一次匹配的第一个字符的位置。如果没有找到匹配,函数返回string::npos。

rfind

这里我们需要注意rfind的返回值:最后匹配的第一个字符的位置。如果没有找到匹配,函数返回string::npos。


substr

这个函数是取出子串,有两个参数:pos,len,pos指的是你想要从哪里开始,len是取得长度,并且它两都有缺省值

我们想要取出文件名的后缀就需要用到rfind和substr这两个函数:

因为最后面的.才是后缀,所以我们需要找最后一个.字符,所以需要用到rfind这个函数

代码测试:

void test_string11()
{
	string s1("test.cpp.tar.zip");
	size_t i1 = s1.find('.');
	size_t i2 = s1.rfind('.');

	string s2 = s1.substr(i1);
	cout << s2 << endl;

	string s3 = s1.substr(i2);
	cout << s3 << endl;
}

取出url协议、域名、uri:

void test_string11()
{
	//string s3("https://legacy.cplusplus.com/reference/string/string/rfind/");
	string s3("ftp://www.baidu.com/?tn=65081411_1_oem_dg");
	// 协议
	// 域名
	// 资源名

	string sub1, sub2, sub3;
	size_t i1 = s3.find(':');
	if (i1 != string::npos)
		sub1 = s3.substr(0, i1);
	else
		cout << "没有找到i1" << endl;

	size_t i2 = s3.find('/', i1 + 3);
	if (i2 != string::npos)
		sub2 = s3.substr(i1 + 3, i2 - (i1 + 3));
	else
		cout << "没有找到i2" << endl;

	sub3 = s3.substr(i2 + 1);

	cout << sub1 << endl;
	cout << sub2 << endl;
	cout << sub3 << endl;
}

find_first_of 和 find_first_not_of

void test_string12()
{
	/*std::string str("Please, replace the vowels in this sentence by asterisks.");
	std::size_t found = str.find_first_not_of("abc");
	while (found != std::string::npos)
	{
		str[found] = '*';
		found = str.find_first_not_of("abcdefg", found + 1);
	}

	std::cout << str << '\n';*/

	std::string str("Please, replace the vowels in this sentence by asterisks.");
	std::size_t found = str.find_first_of("abcd");
	while (found != std::string::npos)
	{
		str[found] = '*';
		found = str.find_first_of("abcd", found + 1);
	}

	std::cout << str << '\n';

}

        string初识篇告一段落,接下来是string的模拟实现。

🔧本文修改次数:0

🧭更新时间:2024年3月19日

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/467924.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Trent电源设计那些事儿教学

本课程将深入探讨Trent电源设计的关键概念与技术。学生将学习功率电子器件和拓扑、电路保护、稳压技术以及EMI滤波等内容。通过理论和实践相结合的教学方式&#xff0c;帮助学员掌握Trent电源设计的原理与应用。 课程大小&#xff1a;12.5G 课程下载&#xff1a;https://down…

计算机网络——物理层(物理传输介质和物理层的设备)

计算机网络——物理层&#xff08;物理传输介质和物理层的设备 物理传输介质导向性传输介质双绞线同轴电缆光纤 非导向性传输介质无线电波多径效应 微波地面微波通信ISM 频段 卫星通信 物理层设备中继器集线器中继器和集线器的区别 我们今天进入物理层的物理传输介质和物理层的…

idea项目配置文件中文乱码

问题&#xff1a; 解决方案&#xff1a;修改字符编码。在IntelliJ IDEA的设置中&#xff0c;依次选择File、Settings、Editor、File Encodings&#xff0c;将Global Encoding、Project Encoding、Default encoding for properties files设置为UTF-8 问题解决~~

超越想象的数据可视化:五大工具引领新潮流

在数据分析领域&#xff0c;数据可视化工具是每位分析师的得力助手。它们能够将复杂的数据转化为直观、易懂的图表和图像&#xff0c;帮助分析师快速洞察数据背后的规律与趋势。下面&#xff0c;我将从数据分析师的角度&#xff0c;为大家介绍五个常用的数据可视化工具。 一、…

基于Linux使用C语言实现简单的目录管理

在Linux下&#xff0c;需要实现某个目录下文件的遍历的时候&#xff0c;可以使用opendir&#xff0c;readdir&#xff0c;closedir这些接口。这些接口使用说明如下所示&#xff1a; 1).opendir DIR* opendir(const char * name); #include <sys/types.h> #include …

蓝桥杯练习02随机数生成器

随机数生成器 介绍 实际工作中随机数的使用特别多&#xff0c;比如随机抽奖、随机翻牌。通过随机数还能实现很多有趣的效果&#xff0c;比如随机改变元素的位置或颜色。 本题需要在已提供的基础项目中使用JS知识封装一个函数&#xff0c;该函数可以根据需要&#xff0c;生成指…

Javaweb学习记录(二)web开发入门(请求响应)

第一个基于springboot的web请求程序 通过创建一个带有springboot的spring项目&#xff0c;项目会自动生成一个程序启动类&#xff0c;该类启动时会启动该整个项目&#xff0c;而我们需要写一个web请求类&#xff0c;要求在本地浏览器上发送请求后&#xff0c;浏览器显示Hello&…

排序问题—java实现

冒泡排序 算法思想&#xff1a; 每次比较相邻元素&#xff0c;若逆序则交换位置&#xff0c;每一趟比较n-1次&#xff0c;确定一个最大值。故需比较n趟&#xff0c;来确定n个数的位置。 外循环来表示比较的趟数&#xff0c;每一趟确定一个最大数的位置内循环来表示相邻数字两…

如何在wps的excel表格里面使用动态gif图

1、新建excel表格&#xff0c;粘贴gif图到表格里面&#xff0c;鼠标右键选择超链接。 找到源文件&#xff0c; 鼠标放到图片上的时候&#xff0c;待有个小手图标&#xff0c;双击鼠标可以放大看到动态gif图。 这种方式需要确保链接的原始文件位置和名称不能变化&#xff01;&a…

阿里云发布 AI 编程助手 “通义灵码”——VSCode更强了 !!

文章目录 什么是 通义灵码&#xff08;TONGYI Lingma&#xff09; 快速体验“通义灵码” 什么是“通义灵码”&#xff08;TONGYI Lingma&#xff09; 通义灵码&#xff08;TONGYI Lingma&#xff09;&#xff0c;是阿里云出品的一款基于通义大模型的智能编码辅助工具&#xff…

创建一个electron-vite项目

前置条件&#xff1a;非常重要&#xff01;&#xff01;&#xff01; npm: npm create quick-start/electronlatest yarn: yarn create quick-start/electron 然后进入目录&#xff0c;下载包文件&#xff0c;运行项目 到以上步骤&#xff0c;你已经成功运行起来一个 electr…

从底层结构开始学习FPGA(0)----FPGA的硬件架构层次(BEL Site Tile FSR SLR Device)

系列目录与传送门 《从底层结构开始学习FPGA》目录与传送门 Xilinx的FPGA&#xff0c;从硬件架构的角度可以划分为6个层次&#xff0c;从底层到顶层依次是&#xff1a; BEL&#xff08;最底层单元&#xff09;SiteTileFSRSLRDevice&#xff08;FPGA芯片&#xff09; 接下来我…

论文解析:V3D: Video Diffusion Models are Effective 3DGenerators

摘要&#xff1a; 自动三维生成最近引起了广泛关注。最近的方法大大加快了生成速度&#xff0c;但由于模型容量有限或三维数据&#xff0c;生成的物体通常不够精细。在视频扩散模型最新进展的推动下&#xff0c;我们引入了 V3D&#xff0c;利用预训练视频扩散模型的世界模拟能…

力扣17. 电话号码的字母组合

Problem: 17. 电话号码的字母组合 文章目录 思路及解法复杂度Code 题目描述 思路及解法 1.将电话号码和对应的数组存入数组中创建映射关系&#xff1b; 2.编写&#xff0c;并调用回溯函数&#xff0c;当决策阶段等于digits的长度时&#xff0c;将当前的决策路径添加到结果集合中…

自学Python第二十九天-feapder框架创建爬虫

自学Python第二十九天-feapder框架创建爬虫 安装feapder 的设计架构feapder 框架的简单使用简单创建爬虫简单爬取数据简单的数据保存 中间件校验浏览器渲染使用浏览器渲染获取接口数据 feapder是一款上手简单&#xff0c;功能强大的 Python爬虫框架&#xff0c;内置 AirSpide…

linux安装WordPress问题汇总,老是提示无法连接到FTP服务器解决方案

最近在做一些建站相关的事情&#xff0c;遇到一些大大小小的问题都整理在这里 1.数据库密码和端口&#xff0c;千万要复杂一点&#xff0c;不要使用默认的3306端口 2.wordpress算是一个php应用吧&#xff0c;所以安装流程一般是 apache http/nginx——php——mysql——ftp &…

嵌入式学习第二十九天!(数据结构的概念、单向链表)

数据结构&#xff1a; 1. 定义&#xff1a; 一组用来保存一种或者多种特定关系的数据的集合&#xff08;组织和存储数据&#xff09; 1. 程序设计&#xff1a; 将现实中大量而复杂的问题以特定的数据类型和特定的数据结构存储在内存中&#xff0c;并在此基础上实现某个特定的功…

Python深度学习技术教程

原文链接&#xff1a;Python深度学习技术教程https://mp.weixin.qq.com/s?__bizMzUzNTczMDMxMg&mid2247597949&idx4&sn65c0d353d02b060fec98ec799f217ae1&chksmfa823e9acdf5b78cd71cfcb060e3b60125b17afbe3e19ef423d4709d2df7fc93d90ce3097253&token14787…

【K8S】docker和K8S(kubernetes)理解?docker是什么?K8S架构、Master节点 Node节点 K8S架构图

docker和K8S理解 一、docker的问世虚拟机是什么&#xff1f;Docker的问世&#xff1f;docker优点及理解 二、Kubernetes-K8SK8S是什么&#xff1f;简单了解K8S架构Master节点Node节点K8S架构图 一、docker的问世 在LXC(Linux container)Linux容器虚拟技术出现之前&#xff0c;业…

汽车功能安全整体方法

摘 要 ISO26262道路车辆功能安全标准已经制定实践了多年&#xff0c;主要目标是应对车辆的电子和电气&#xff08;E/E&#xff09;系统失效。该方法践行至今&#xff0c;有些系统功能安全方法已经成熟&#xff0c;例如电池管理系统&#xff08;BMS&#xff09;&#xff0c;并且…