Python深度学习技术教程

原文链接:Python深度学习技术教程icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzUzNTczMDMxMg==&mid=2247597949&idx=4&sn=65c0d353d02b060fec98ec799f217ae1&chksm=fa823e9acdf5b78cd71cfcb060e3b60125b17afbe3e19ef423d4709d2df7fc93d90ce3097253&token=1478784511&lang=zh_CN#rd

前言

近年来,伴随着以卷积神经网络(CNN)为代表的深度学习的快速发展,人工智能迈入了第三次发展浪潮,AI技术在各个领域中的应用越来越广泛。

注意力(Attention)机制

1、注意力机制的背景和动机(为什么需要注意力机制?注意力机制的起源和发展)。

2、注意力机制的基本原理:用机器翻译任务带你了解Attention机制、如何计算注意力权重?

3、注意力机制的一些变体(硬性注意力机制、软性注意力机制、键值对注意力机制、多头注意力机制、多头注意力机制、……)。

4、注意力机制的可解释性(如何使用注意力机制进行模型解释?注意力机制的可视化技术?)

Transformer模型

1、Transformer模型拓扑结构

2、Transformer模型工作原理(为什么Transformer模型需要位置信息?位置编码的计算方法?Transformer模型的损失函数?)

3、自然语言处理(NLP)领域的Transformer模型:BERT、GPT-1 / GPT-2 / GPT-3 / GPT-3.5 / GPT-4(模型的总体架构、输入和输出形式、预训练目标、预训练数据的选择和处理、词嵌入方法、GPT系列模型的改进与演化、……)。

4、计算视觉(CV)领域的Transformer模型:DETR / ViT / Swin Transformer(DERT:基于Transformer的检测头设计、双向匹配损失;ViT:图像如何被分割为固定大小的patches?如何将图像patches线性嵌入到向量中?Transformer在处理图像上的作用?Swin:窗口化自注意力机制、层次化的Transformer结构、如何利用位移窗口实现长范围的依赖?)

生成式模型

1、变分自编码器VAE(自编码器的基本结构与工作原理、变分推断的基本概念及其与传统贝叶斯推断的区别、VAE的编码器和解码器结构及工作原理)。

2、生成式对抗网络GAN(GAN提出的背景和动机、GAN的拓扑结构和工作原理、生成器与判别器的角色、GAN的目标函数)。

3、扩散模型Diffusion Model(扩散模型的核心概念?如何使用随机过程模拟数据生成?扩散模型的工作原理)。

4、跨模态图像生成DALL.E(什么是跨模态学习?DALL.E模型的基本架构、模型训练过程)。

目标检测算法

1. 目标检测任务与图像分类识别任务的区别与联系

2. 两阶段(Two-stage)目标检测算法:R-CNN、Fast R-CNN、Faster R-CNN(RCNN的工作原理、Fast R-CNN和Faster R-CNN的改进之处 )。

3. 一阶段(One-stage)目标检测算法:YOLO模型、SDD模型(拓扑结构及工作原理)。

4. 案例演示          
5、实操练习

图神经网络

1. 图神经网络的背景和基础知识(什么是图神经网络?图神经网络的发展历程?为什么需要图神经网络?)

2. 图的基本概念和表示(图的基本组成:节点、边、属性;图的表示方法:邻接矩阵;图的类型:无向图、有向图、加权图)。

3. 图神经网络的工作原理(节点嵌入和特征传播、聚合邻居信息的方法、图神经网络的层次结构)。

4. 图卷积网络(GCN)的工作原理

5. 图神经网络的变种和扩展:图注意力网络(GAT)、图同构网络(GIN)、图自编码器、图生成网络。

强化学习

1、强化学习的基本概念和背景(什么是强化学习?强化学习与其他机器学习方法的区别?强化学习的应用领域有哪些?

2、Q-Learning(马尔可夫决策过程、Q-Learning的核心概念、什么是Q函数?Q-Learning的基本更新规则)。

3、深度Q网络(DQN)(为什么传统Q-Learning在高维或连续的状态空间中不再适用?如何使用神经网络代替Q表来估计Q值?目标网络的作用及如何提高DQN的稳定性?)

深度学习模型可解释性与可视化方法

1、什么是模型可解释性?为什么需要对深度学习模型进行解释?

2、可视化方法有哪些(特征图可视化、卷积核可视化、类别激活可视化等)?

3、类激活映射CAM(Class Activation Mapping)、梯度类激活映射GRAD-CAM、局部可解释模型-敏感LIME(Local Interpretable Model-agnostic Explanation)、等方法原理讲解。

4、t-SNE的基本概念及使用t-SNE可视化深度学习模型的高维特征

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/467893.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【K8S】docker和K8S(kubernetes)理解?docker是什么?K8S架构、Master节点 Node节点 K8S架构图

docker和K8S理解 一、docker的问世虚拟机是什么?Docker的问世?docker优点及理解 二、Kubernetes-K8SK8S是什么?简单了解K8S架构Master节点Node节点K8S架构图 一、docker的问世 在LXC(Linux container)Linux容器虚拟技术出现之前,业…

汽车功能安全整体方法

摘 要 ISO26262道路车辆功能安全标准已经制定实践了多年,主要目标是应对车辆的电子和电气(E/E)系统失效。该方法践行至今,有些系统功能安全方法已经成熟,例如电池管理系统(BMS),并且…

Javaweb学习记录(三)请求响应案例

下面为一个请求响应案例,postman发送请求,服务器响应将一个xml文件中的数据通过读取解析,将其用Result类标准的格式返回前端,在前端用json的方式显示 后端Controller代码 1、通过本类的字节码文件得到类加载器并寻找到需要解析的…

vue2使用webSocket双向通讯

基于webSocket实现双向通信,使用webworker保持心跳。 由于浏览器的资源管理策略会暂停或限制某些资源的消耗,导致前端心跳包任务时效,后端接收不到webSocket心跳主动断开,因此需要使用webworker保持心跳 引入webworker npm insta…

【Ubuntu】Ubuntu的安装和配置

下载ubuntu镜像 https://releases.ubuntu.com/22.04.4/ubuntu-22.04.4-desktop-amd64.iso 一、Ubuntu安装 1.新建虚拟机 1.1按照它的提示创建用户;后面一直下一步就好 2.启动Ubuntu虚拟机 2.1设置为中文键盘 2.2默认即可;若是有低需求也可以选择最小…

Coursera上Golang专项课程3:Concurrency in Go 学习笔记(完结)

Concurrency in Go 本文是 Concurrency in Go 这门课的学习笔记,如有侵权,请联系删除。 文章目录 Concurrency in GoMODULE 1: Why Use Concurrency?Learning Objectives M1.1.1 - Parallel ExecutionM1.1.2 - Von Neumann BottleneckM1.1.3 - Power W…

Python基础(六)之数值类型元组

Python基础(六)之数值类型元组 1、简介 元组: 在Python中是内置的数据结构之一,是一个不可变的序列,切可以是任何类型数据。元组的元素放在()小括号内。一般我们希望数据不改变的时候使用 不可变与可变的…

Day69:WEB攻防-Java安全JWT攻防Swagger自动化算法签名密匙Druid泄漏

目录 Java安全-Druid监控-未授权访问&信息泄漏 黑盒发现 白盒发现 攻击点 Java安全-Swagger接口-导入&联动批量测试 黑盒发现 白盒发现 自动化发包测试 自动化漏洞测试 Java安全-JWT令牌-空算法&未签名&密匙提取 识别 JWT 方式一:人工识…

web渗透测试漏洞复现:Elasticsearch未授权漏洞复现

web渗透测试漏洞复现 Elasticsearch未授权漏洞复现Elasticsearch简介Elasticsearch复现Elasticsearch漏洞修复和加固措施 Elasticsearch未授权漏洞复现 Elasticsearch简介 Elasticsearch 是一款 Java 编写的企业级搜索服务,它以分布式多用户能力和全文搜索引擎为特…

使用jenkins-pipeline进行利用项目文件自动化部署到k8s上

Discard old builds:丢弃旧的构建,目的是管理存储空间、提升性能以及保持环境整洁 Do not allow concurrent builds: 禁止并发构建是指同一时间内只允许一个构建任务执行,避免多个构建同时运行可能带来的问题 Do not allow the pipeline to resume if the controller resta…

RPC学习笔记一

什么是RPC RPC(Remote Procedure Call,远程过程调用)是一种用于实现分布式系统中不同计算机或进程之间进行通信和调用的技术和模式。 在传统的过程调用中,当一个程序需要调用另一个程序的函数或方法时,通常是在同一台…

ChatGPT4的Dalle-3 生成电影海报及升级教程

引言 首先DALL E3首先需要升级为ChatGPT4才能使用,接下来从以下几个方面进行介绍: 一、ChatGPT4中的DALL E3 的电影海报二、ChatGPT4下的DALL E3的实例三、ChatGPT4的升级教程 一、ChatGPT4中的DALL E3 的电影海报 DALLE 3可以直接在画面中识别和生成…

【Qt图形界面引擎(一)】:第一个Qt程序

跨平台图形界面引擎,接口简单,易上手,一定程度简化内存。 Qt发展史 1991年由Qt Company开发的跨平台C图形用户界面应用程序开发框架2008年,Qt Company科技被诺基亚公司收购,Qt也因此成为诺基亚旗下的编程语言工具2012…

【vue elementUI】修改el-dropdown样式

实现效果如下&#xff1a; 代码如下&#xff1a; <el-dropdown trigger"click" command"handleCommand" active-text-color"#606266"><span class"product-card">{{getCategoryName(categoryId)}}</span><el-dro…

一文解决内网传外网sftp没跑满带宽问题

随着企业网络的日益复杂&#xff0c;内部网络与外部网络之间的文件传输需求不断增长。然而&#xff0c;标准的SFTP协议在跨网络传输时常常无法充分运用可用带宽&#xff0c;导致传输效率不尽人意。本文旨在探讨影响内网至外网SFTP传输效率的因素&#xff0c;并结合一种高效的解…

Uibot (RPA设计软件)财务会计Web应用自动化(批量开票机器人)

Uibot (RPA设计软件&#xff09;Mage AI智能识别&#xff08;发票识别&#xff09;———机器人的小项目友友们可以参考小北的课前材料五博客~ (本博客中会有部分课程ppt截屏,如有侵权请及请及时与小北我取得联系~&#xff09; 紧接着小北的前两篇博客&#xff0c;友友们我们…

Vue+SpringBoot打造数据可视化的智慧河南大屏

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、系统展示四、核心代码4.1 数据模块 A4.2 数据模块 B4.3 数据模块 C4.4 数据模块 D4.5 数据模块 E 五、免责说明 一、摘要 1.1 项目介绍 基于JAVAVueSpringBootMySQL的数据可视化的智慧河南大屏&#xff0c;包含了GDP、…

深入解析:在 Node.js 中删除文件的正确姿势

引言 在 Node.js 中处理文件尤其是移除文件&#xff0c;对于维护高效应用程序至关重要。储存和秩序当道的今天&#xff0c;删除不必要或冗余的文件能力显得尤为关键。本文深入探讨你会想要使用这个强大功能的时刻和原因&#xff0c;并通过各种案例展示了这个概念&#xff0c;同…

基于Matlab的视频人面检测识别,Matalb实现

博主简介&#xff1a; 专注、专一于Matlab图像处理学习、交流&#xff0c;matlab图像代码代做/项目合作可以联系&#xff08;QQ:3249726188&#xff09; 个人主页&#xff1a;Matlab_ImagePro-CSDN博客 原则&#xff1a;代码均由本人编写完成&#xff0c;非中介&#xff0c;提供…

HTML静态网页成品作业(HTML+CSS)——个人介绍网页(1个页面)

&#x1f389;不定期分享源码&#xff0c;关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 &#x1f3f7;️本套采用HTMLCSS&#xff0c;未使用Javacsript代码&#xff0c;共有1个页面。 二、作品演示 三、代…