基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分类

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统】40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统】
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统】42.【基于YOLOv8深度学习的无人机视角地面物体检测系统】
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统】44.【基于YOLOv8深度学习的野外火焰烟雾检测系统】
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~

《------正文------》

基本功能演示

在这里插入图片描述

摘要:玉米是全球范围内种植最为广泛的农作物之一,对于粮食安全和农业经济发展有着举足轻重的作用。玉米病害会严重影响作物的生长和产量,直接威胁粮食供应。本文基于YOLOv8深度学习框架,通过3852张图片,训练了一个玉米叶片病害的识别模型,可用于识别4种不同的玉米病害类型。并基于此模型开发了一款带UI界面的玉米叶片病害智能诊断与防治系统,可快速、准确地识别实时识别场景中的玉米叶片病害类型,同时提供科学的防治建议,这有助于农户及时采取措施,有效控制病害扩散,显著提升农业生产的效率和可持续性。该系统是基于pythonPyQT5开发的,支持图片批量图片视频以及摄像头进行识别检测。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3.模型训练
    • 4. 训练结果评估
    • 5. 利用模型进行推理
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

玉米是全球范围内种植最为广泛的农作物之一,对于粮食安全和农业经济发展有着举足轻重的作用。玉米叶片病害会严重影响作物的生长和产量,直接威胁粮食供应。通过智能诊断与防治系统,可以快速准确地识别病害类型,及时提供防治建议,极大提升病害管理的效率和效果,降低农业生产的风险,保障农业可持续发展。

玉米叶片病害智能诊断与防治系统的应用场景包括
玉米农田监控:辅助农民在大面积的玉米种植区进行病害监测和管理,确保作物健康生长。
农业研究和病害防控评估:为研究人员提供数据,帮助他们研究病害发展规律和评估防治措施的有效性。
农技推广和培训:系统可以作为教育工具,辅助农技人员和农民学习病害识别和处理方法。
农资企业服务:农资企业可基于系统诊断结果,为农户提供个性化的防病农药和肥料配套方案。
智能农业解决方案:将玉米叶片病害检测与农场管理系统相结合,提供从种植、管理到收获的全流程智能解决方案。

总结来说,玉米叶片病害智能诊断与防治系统对现代农业的精准管理和科学化经营至关重要。这种系统的应用能显著提升病害管理水平,减少经济损失,并有助于实现农药的精准化使用,最终促使农业生产朝着更加绿色、智能的方向发展。随着人工智能技术在农业领域的深入应用,类似的系统也将在提高农业生产效率和保障粮食安全方面发挥日益重要的作用。

博主通过搜集玉米叶片病害的相关数据图片并整理,根据YOLOv8的深度学习技术训练识别模型,并基于python与Pyqt5开发了一款界面简洁的玉米叶片病害智能诊断与防治系统,可支持图片、批量图片、视频以及摄像头检测

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行4种不同玉米叶片病害的类型识别,分别为:['锈病','灰叶斑病','健康','枯叶病'];
2.可针对不同病害类型给出对应的防治方法与建议【可自己添加具体描述,字数不限】;
3. 支持图片、批量图片、视频以及摄像头检测
4. 界面可实时显示识别结果置信度用时等信息;

(1)图片检测演示

单个图片检测操作如下:
点击打开图片按钮,选择需要检测的图片,就会显示检测结果。操作演示如下:
在这里插入图片描述

批量图片检测操作如下:
点击打开文件夹按钮,选择需要检测的文件夹【注意是选择文件夹】,可进行批量图片检测,表格中会有所有图片的检测结果信息,点击表格中的指定行,会显示指定行图片的检测结果双击路径单元格,会看到图片的完整路径。操作演示如下:
在这里插入图片描述

(2)视频检测演示

点击打开视频按钮,打开选择需要检测的视频,就会自动显示检测结果。
在这里插入图片描述

(3)摄像头检测演示

点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击摄像头按钮,可关闭摄像头。
在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的深度学习技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性,在精度和速度方面都具有尖端性能。在之前YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
YOLO各版本性能对比:
在这里插入图片描述
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

本文使用的玉米叶片病害数据集共包含3852张图片,分为4个病害类别,分别是['锈病','灰叶斑病','健康','枯叶病']。部分数据集及类别信息如下:
在这里插入图片描述
在这里插入图片描述

图片数据集的存放格式如下,在项目目录中新建datasets目录,同时将分类的图片分为训练集与验证集放入Data目录下。
在这里插入图片描述

3.模型训练

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLO
import matplotlib
matplotlib.use('TkAgg')

if __name__ == '__main__':
    # 训练模型配置文件路径
    yolo_yaml_path = 'ultralytics/cfg/models/v8/yolov8-cls.yaml'
    # 官方预训练模型路径
    pre_model_path = "yolov8n-cls.pt"
    # 加载预训练模型
    model = YOLO(yolo_yaml_path).load(pre_model_path)
    # 模型训练
    model.train(data='datasets/Data', epochs=150, batch=4)

4. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

本文训练结果如下:
通过accuracy_top1图片准确率曲线图我们可以发现,该模型在验证集的准确率约为0.99,结果还是很不错的。
在这里插入图片描述

5. 利用模型进行推理

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
在这里插入图片描述

图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/RS_Rust 1598.JPG"

# 加载模型
model = YOLO(path, task='classify')

# 检测图片
results = model(img_path)
print(results)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=0.3,fy=0.3,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述
以上便是关于此款玉米叶片病害智能诊断与防治系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、批量图片、视频及摄像头进行检测

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,发送【源码】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练好的结果文件、训练代码、UI源码、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境,【包含环境配置说明文档和一键环境配置脚本文件】。

关注下方名片GZH:【阿旭算法与机器学习】,发送【源码】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/467846.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

自然语言处理里预训练模型——BERT

BERT,全称Bidirectional Encoder Representation from Transformers,是google在2018年提出的一个预训练语言模型,它的推出,一举刷新了当年多项NLP任务值的新高。前期我在零、自然语言处理开篇-CSDN博客 的符号向量化一文中简单介绍…

爬虫 Day2

resp.close()#关掉resp 一requests入门 (一) 用到的网页:豆瓣电影分类排行榜 - 喜剧片 import requestsurl "https://movie.douban.com/j/chart/top_list" #参数太长,重新封装参数 param {"type": "…

科技驱动未来:ChatGPT3.5、GPT4.0、DALL·E 3和Midjourney联手重构人工智能生态

MidTool (kk.zlrxjh.top)(亦称迷图网或者是免费的ChatGPT中文版以及Midjourney的AI绘画聊天工具)是一款综合了众多科技前沿的人工智能助手,其中就包括了ChatGPT3.5、GPT4.0、DALLE 3以及Midjourney等多种智能服务&…

Hive优化

工作中涉及到优化部分不多,下面的一些方案可能会缺少实际项目支撑,这里主要是为了完备一下知识体系。 参考的hive参数管理文档地址:https://cwiki.apache.org/confluence/display/Hive/ConfigurationProperties 对于Hive优化,可以…

综合知识篇10-计算机网络考点(2024年软考高级系统架构设计师冲刺知识点总结系列文章)

专栏系列文章: 2024高级系统架构设计师备考资料(高频考点&真题&经验)https://blog.csdn.net/seeker1994/category_12593400.html案例分析篇00-【历年案例分析真题考点汇总】与【专栏文章案例分析高频考点目录】(2024年软考高级系统架构设计师冲刺知识点总结-案例…

SpringBoot2.7集成Swagger3

Swagger2已经在17年停止维护了,取而代之的是 Swagger3(基于openApi3),所以新项目要尽量使用Swagger3. Open API OpenApi是业界真正的 api 文档标准,其是由 Swagger 来维护的,并被linux列为api标准&#x…

【洛谷 P9232】[蓝桥杯 2023 省 A] 更小的数 题解(字符串+区间DP)

[蓝桥杯 2023 省 A] 更小的数 题目描述 小蓝有一个长度均为 n n n 且仅由数字字符 0 ∼ 9 0 \sim 9 0∼9 组成的字符串,下标从 0 0 0 到 n − 1 n-1 n−1,你可以将其视作是一个具有 n n n 位的十进制数字 n u m num num,小蓝可以从 n…

相对全面的四足机器人驱动规划MATLAB和Simulink实现方式(足端摆线规划,Hopf-CPG,Kimura-CPG)

许久没更新四足机器人相关的博客文章,由于去年一整年都在干各种各样的~活,终于把硕士毕业论文给写好,才有点时间更新自己的所学和感悟。步态规划和足端规划只是为了在运动学层面获取四足机器人各关节的期望角位移和速度信号,再由底…

基于Java中的SSM框架实现在线通用旅游平台网站系统项目【项目源码+论文说明】

基于Java中的SSM框架实现在线通用旅游平台网站系统演示 摘要 近几年来,计算机网络的发展得到了飞速的提升,由此展开的一系列行业大洗牌也由此开始。早些年只是人们只是对于计算机和互联网有了些基础的认识,现在它正在悄悄的改变着我们生活的…

Latex插入pdf图片,去除空白部分

目录 参考链接: 流程: 参考链接: ​科研锦囊之Latex-如何插入图片、表格、参考文献 http://t.csdnimg.cn/vpSJ3 流程: Latex的图片插入支持PDF文件,这里笔者建议都使用PDF文件进行图片的插入,因为PDF作…

广州大彩科技新品发布:大彩科技COF系列2.4寸串口屏发布!

一、产品介绍 此次发布的是S系列平台2.4寸COF超薄结构串口屏,分辨率为240*320,该平台采用了Cortex-M3内核的处理器,内置了2Mbyte PSRAM和64Mbit FLASH,是专为小尺寸串口屏设计的MCU,精简了外围电路。 该平台默认支持大…

鸿蒙App开发学习 - TypeScript编程语言全面开发教程(下)

现在我们接着上次的内容来学习TypeScript编程语言全面开发教程(下半部分) 4. 泛型 TypeScript 中的泛型(Generics)是一种编程模式,用于在编写代码时增强灵活性和可重用性。泛型使得在定义函数、类、接口等数据类型时…

MySQL 锁机制

优质博文:IT-BLOG-CN 定义:锁是计算机协调多个进程或线程并发访问某一资源的机制。 一、表锁(偏读) MyISAM 引擎,开销小,加锁快,无死锁、锁定粒度大、发生锁冲突的粒度最高,并发度…

从零开始学习深度学习库-4:自动微分

欢迎来到本系列的第四部分,在这里我们将讨论自动微分 介绍 自动微分(Automatic Differentiation,简称AD)是一种计算数学函数导数(梯度)的技术。在深度学习和其他领域中,自动微分是一种极其重要…

C#集合:从字典到队列——探索数据结构核心

文章目录 C# 中的集合类型C# Dictionary 字典C# Hashtable:哈希表Hashtable 类中的属性Hashtable 类中的方法 C# SortedList:排序列表SortedList 类的中的属性SortedList 类的中的方法 C# Stack:堆栈Stack 类中的属性Stack 类中的方法 C# Que…

深度学习面经-part3(RNN、LSTM)

3.RNN 核心思想:像人一样拥有记忆能力。用以往的记忆和当前的输入,生成输出。 RNN 和 传统神经网络 最大的区别:在于每次都会将前一次的输出结果,带到下一次的隐藏层中,一起训练。 RNN应用场景: 1.文本生成 2.语音识别 3.机器翻…

C/C++动态链接库的封装和调用

1 引言 静态链接库是在编译时被链接到程序中的库文件,在编译时,链接器将静态链接库的代码和数据复制到最终的可执行文件中。动态链接库是在程序运行时加载的库文件,在编译时,可执行文件只包含对动态链接库的引用,而不…

mac npm install 很慢或报错

npm ERR! code CERT_HAS_EXPIRED npm ERR! errno CERT_HAS_EXPIRED npm ERR! request to https://registry.npm.taobao.org/pnpm failed, reason: certificate has expired 1、取消ssl验证: npm config set strict-ssl false 修改后一般就可以了,…

前端面试拼图-知识广度

摘要:最近,看了下慕课2周刷完n道面试题,记录并添加部分可参考的文档,如下... 1. 移动端H5 click有300ms延迟, 如何解决? 背景:double tap to zoom 移动端H5中的300ms点击延迟问题通常是由浏览…

3d导出stl格式模型破碎是什么原因,怎么解决?---模大狮模型网

在导出3D模型为STL格式时出现破碎(或称为碎片化)的情况通常是由于模型中存在几何上的问题造成的。以下是一些可能导致STL模型破碎的原因以及解决方法: 3d导出stl格式模型破碎的原因: 模型不封闭:STL格式要求模型必须是封闭的实体&#xff0c…