文心一言赋能问卷生成,打造高效问卷调研工具

当前,各种大语言模型(LLM,Large Language Model)井喷式发展,基于LLM的应用也不断涌现。但是,当开发者基于LLM开发下游应用时,LLM直接生成的结果在格式、内容等方面都存在许多不确定因素,难以与其他业务逻辑代码做数据交互,导致开发者需要多次生成并对输出结果做大量的规则判断处理工作,使得大模型原生应用的开发门槛抬高、难度加大。

为此,本文以问卷页面生成任务为例,手把手教大家控制ERNIE SDK输出JSON格式的生成结果并与前端交互,实现通过ERNIE SDK生成问卷网页的目的。通过本文,你将学习到:

  • 前后端交互的桥梁——JSON
  • 用LLM2Json控制文心大模型4.0的输出格式
  • 基于文心大模型的原生应用开发流程

JSON数据结构

本文任务的核心是生成交互数据,前后端的交互数据常用格式有JSON和XML。由于JSON格式结构简单,容易被各大常用开发语言解析和生成,因此目前绝大多数Web应用使用JSON格式进行交互。

JSON数据根据结构的复杂度可简单可分成两种,单层结构和多层嵌套结构。

单层结构

单层数据结构是类似于 {key1: value1, key2: value2, …} 这样只有一层键值对关系的结构,相对来说比较简单,生成可控度高,不容易出错。比如:

{
    "address": "北京市朝阳区XXX路XXX号",
    "date": "2023-06-25",
    "email": "zhangsan@example.com",
    "idcode": "110101199003077777",
    "name": "张三",
    "phone": "13800000000",
    "sex": "男"
}

多层嵌套结构

多层嵌套结构是比较复杂的数据结构,如例子所示,在address的第一层级下,嵌套了第二层级的city、area、road和detail字段。在真实业务场景中,数据结构体往往是多层嵌套,字段多,嵌套关系也比较复杂,因此该类数据结构体生成的难度比较大,容易出现一些纰漏导致数据解析不正确而报错。

{
    "address": {
        "city": "北京市",
        "area": "朝阳区",
        "road": "XXX路",
        "detail": "XXX号"
    },
    "date": "2023-06-25",
    "email": {
        "common": "zhangsan@example.com",
        "backup": "zhangsan@example1.com"
    },
    "idcode": "110101199003077777",
    "name": "张三",
    "phone": "13800000000",
    "sex": "男"
}

本文的问卷网页生成任务,本质上就是生成一个多层嵌套结构的数据,并与前端交互渲染形成可视化网页,下面开始给大家演示和解析代码。

动手开发

安装依赖

本项目需要主要依赖erniebot和llm2json两个包。ERNIE SDK用于调用文心一言的文本生成能力,目前支持ernie-3.5、ernie-turbo、ernie-4.0、ernie-longtext等多个版本等模型直接调用。LLM2Json是一个易于使用的格式化大语言模型输出工具包,它的主要设计思想和部分实现代码参考LangChain。它可以通过自动构建prompts引导大语言模型输出符合JSON语法的返回数据,解决了大语言模型格式化输出、数据交互、前端开发等遇到的数据格式相关问题,使下游的应用程序、GPTs、Agents等开发更加方便快捷。

pip install erniebot --upgrade
pip install llm2json

配置 ERNIE SDK

对ERNIE SDK进行简单的封装,以便后面代码快速调用。请注意将access_token换成你的aistudio账户对应的token,同时保证token余额充足。另外,本项目演示使用ernie-4.0版本,在测试环境中4.0版本的表现最优,开发者可根据自己的成本和推理速度需求更换为ernie-3.5、ernie-turbo等版本。

import erniebot

erniebot.api_type = "aistudio"
erniebot.access_token = "xxxxxxxxxxxxxxxxxxx"

def ernieChat(content):
    response = erniebot.ChatCompletion.create(model = "ernie-4.0",
        messages = [{
            "role": "user",
            "content": content
        }])
    return response.get_result()

定义数据结构

一份问卷的生成结构至少有两层。第一层是title(问卷标题)、description(问卷描述)和最核心的data(问题列表)结构体。第二层是对data嵌套数据的定义。在data下面有若干个问题和选项,并且问题类型有单选题、多选题、填空题,因此,这里需要针对问题定义一个新的对象Question,第一个键是types,用于确定问题类型,它是整数型的数据(1为单选,2为多选,3为填空);第二个是question,定义问题;第三个是choices问题对应的选项内容,数据类型是列表list。

from typing
import List
from llm2json.prompts.schema
import BaseModel, Field

class Question(BaseModel):
    types: int = Field(description = "问题类型,1为单选,2为多选,3为填空")
    question: str = Field(description = "问题内容")
    choices: List[str] = Field(description = "选项内容")

class WenJuan(BaseModel):
    title: str = Field(description = "问卷标题")
    description: str = Field(description = "问卷描述")
    data: List[Question] = Field(description = "问题列表")

定义正例

因为多层嵌套的数据结构体比较复杂,因此建议开发者最好给模型输入一个正确示例,让模型生成的输出结果更加完美和稳定。

correct_example = ''
' {
    "title": "问卷标题",
    "description": "问卷描述",
    "data": [{
            "types": 1,
            "question": "问题(单选)"
            "choices": ["选项1", "选项2", "选项3"]
        },
        {
            "types": 2,
            "question": "问题(多选)"
            "choices": ["选项1", "选项2", "选项3"]
        },
        {
            "types": 3,
            "question": "问题(填空)"
        },
    ]
}
''
'

定义Prompt任务模板

Prompt任务模版主要是告诉大语言模型需要生成的内容,以及定义用户输入变量。在本案例中,我们的目的是生成问卷,用户输入的变量是问卷的主题(topic)和问题的数量(num),并将3、4中定义好的数据结构和正例传入。

from llm2json.prompts import Templates

t = Templates(prompt="""
请你根据主题<{topic}>,设计一份问卷。
问卷描述需要简单说明该问卷调研的目的。
问卷题型需包含单选、多选和填空题,对应types分别为1、2、3。
如果题目类型为填空题,该题不需要返回choices字段。
出题题型顺序请随机生成。
题目总数为{num}道题。
""", 
field=WenJuan,
correct_example=correct_example)

测试生成

以文心一言用户反馈作为问卷的主题,生成一份包含10道题的问卷。

from llm2json.output import JSONParser
from pprint import pprint

# 将用户输入替换模型变量
template = t.invoke(topic="文心一言用户反馈", num="10")
# 将Prompt模版提交给ErnieBot
ernieResult = ernieChat(template)

# 解析生成结果
parser = JSONParser()
result = parser.to_dict(ernieResult)
pprint(result)

运行后,会得到如下图所示的数据:

前端绑定渲染

获得生成后的JSON格式数据,就可以与前端代码结合,解析数据结构体、绑定字段并渲染。前端的核心代码主要是对问卷类型的判断,然后根据问卷类型,也就是types的值匹配不同的表单组件。(此处只展示前端核心代码部分,完整前端代码请通过文章最后的项目链接获取)

<div class="choices">
<!--单选题-->
<div v-if="item.types==1">
<a-radio-group v-model:value="item.choices.keys">
<a-radio v-for="choice in item.choices" :value="choice">
{{ choice }}
</a-radio>
</a-radio-group>
</div>

<!--多选题-->
<div v-else-if="item.types==2">
<a-checkbox-group 
:options="item.choices" />
</div>

<!--填空题-->
<div v-else-if="item.types==3">
<a-input style="max-width:300px"/>
</div>
</div>

前端渲染结果:

快速体验

本项目以问卷网页生成任务为案例,为大家介绍了控制大语言模型格式化输出JSON多层嵌套结构数据并与前端字段绑定做数据交互的流程。通过利用JSON数据结构进行前后端的链接交互,开发者可以将大语言模型的能力轻松集成到现有OA、ERP和CRM等系统,快速赋能企业已有业务,实现办公智能化升级;或从零开始高效开发大模型原生应用,不再担心数据结构解析出错等灾难性问题,为用户提供更好的服务体验。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/467506.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Stable Diffusion WebUI 生成参数:采样器(Sampling method)和采样步数(Sampling steps)

本文收录于《AI绘画从入门到精通》专栏&#xff0c;专栏总目录&#xff1a;点这里。 大家好&#xff0c;我是水滴~~ 本文将深入探讨Stable Diffusion WebUI生成参数中的采样器和采样步数&#xff0c;旨在为读者呈现一个全面而细致的解析。我们将从采样器和采样步数的概念出发&…

学习笔记Day8:GEO数据挖掘-基因表达芯片

GEO数据挖掘 数据库&#xff1a;GEO、NHANCE、TCGA、ICGC、CCLE、SEER等 数据类型&#xff1a;基因表达芯片、转录组、单细胞、突变、甲基化、拷贝数变异等等 常见图表 表达矩阵 一行为一个基因&#xff0c;一列为一个样本&#xff0c;内容是基因表达量。 热图 输入数据…

Unity类银河恶魔城学习记录10-14 p102 Applying damage to skills and clean up源代码

Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释&#xff0c;可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码 【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili Entity.cs using System.Collections; using System.Collections.Generic;…

生成微信小程序二维码

首页 -> 统计 可以通过上面二个地方配置&#xff0c;生成小程序的二维码&#xff0c;并且在推广分析里&#xff0c;有详细的分析数据&#xff0c;

【神经网络 基本知识整理】(激活函数) (梯度+梯度下降+梯度消失+梯度爆炸)

神经网络 基本知识整理 激活函数sigmoidtanhsoftmaxRelu 梯度梯度的物理含义梯度下降梯度消失and梯度爆炸 激活函数 我们知道神经网络中前一层与后面一层的连接可以用y wx b表示&#xff0c;这其实就是一个线性表达&#xff0c;即便模型有无数的隐藏层&#xff0c;简化后依旧…

跳绳计数,YOLOV8POSE

跳绳计数&#xff0c;YOLOV8POSE 通过计算腰部跟最初位置的上下波动&#xff0c;计算跳绳的次数

使用Python进行数据库连接与操作SQLite和MySQL【第144篇—SQLite和MySQL】

&#x1f47d;发现宝藏 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 使用Python进行数据库连接与操作&#xff1a;SQLite和MySQL 在现代应用程序开发中&#xf…

Github 2024-03-18开源项目日报Top10

根据Github Trendings的统计,今日(2024-03-18统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Python项目7TypeScript项目3非开发语言项目1Solidity项目1《Hello 算法》:动画图解、一键运行的数据结构与算法教程 创建周期:476 天协议类型…

ubuntu下在vscode中配置matplotlibcpp

ubuntu下在vscode中配置matplotlibcpp 系统&#xff1a;ubuntu IDE&#xff1a;vscode 库&#xff1a;matplotlib-cpp matplotlibcpp.h文件可以此网址下载&#xff1a;https://github.com/lava/matplotlib-cpp 下载的压缩包中有该头文件&#xff0c;以及若干实例程序。 参考…

无人机助力智慧农田除草新模式,基于YOLOv7【tiny/l/x】不同系列参数模型开发构建无人机航拍场景下的农田杂草检测识别系统

科技发展到今天&#xff0c;无人机喷洒药物已经不是一件新鲜事情了&#xff0c;在很多高危的工作领域中&#xff0c;比如高空电力设备除冰&#xff0c;电力设备部件传送更换等等&#xff0c;无人机都可以扮演非常出色的作用&#xff0c;前面回到老家一段时间&#xff0c;最近正…

笔记本固态硬盘损坏数据恢复两种方法 笔记本固态硬盘损坏如何恢复

大家好&#xff01;今天要跟大家分享的是笔记本固态硬盘损坏数据恢复的两种方法。相信很多小伙伴都遇到过这种情况&#xff0c;电脑突然蓝屏或者死机&#xff0c;再开机后发现自己的数据不见了&#xff0c;这时候该怎么办呢&#xff1f;这可真是让人头疼。毕竟&#xff0c;我们…

设计模式学习笔记 - 设计原则与思想总结:2.运用学过的设计原则和思想完善之前性能计数器项目

概述 在 《设计原则 - 10.实战&#xff1a;针对非业务的通用框架开发&#xff0c;如何做需求分析和设计及如何实现一个支持各种统计规则的性能计数器》中&#xff0c;我们讲解了如何对一个性能计数器框架进行分析、设计与实现&#xff0c;并且实践了一些设计原则和设计思想。当…

ASP.NET通过Appliaction和Session统计在人数和历史访问量

目录 背景: Appliaction&#xff1a; Session&#xff1a; 过程&#xff1a; 数据库&#xff1a; Application_Start&#xff1a; Session_Start&#xff1a; Session_End&#xff1a; Application_End&#xff1a; 背景: 事件何时激发Application_Start在调用当前应用…

REDHAWK——连接(续)

文章目录 前言一、突发 IO1、数据传输①、输入②、输出 2、突发信号相关信息 (SRI)3、多输出端口4、使用复数数据①、在 C 中转换复数数据 5、时间戳6、端口统计①、C 二、消息传递1、消息生产者①、创建一个消息生产者②、发送消息 2、消息消费者①、创建消息消费者②、注册接…

Ruoyi前后端分离项目部署至Tomcat上

项目部署 4.1.前端打包 disaster-ui目录下为本项目的前端所在位置&#xff0c;在命令行窗口进入该目录&#xff0c;然后输入npm run build:prod部署前端Vue项目,或者直接在disaster-ui/bin目录下双击build.bat文件部署前端。 图 4-1 前端部署图 4.2 环境变量 在MySQL可视化…

Vmware虚拟机配置虚拟网卡

背景 今天同事咨询了我一个关于虚拟机的问题&#xff0c;关于内网用Vmware安装的虚拟机&#xff0c;无法通过本机访问虚拟上的Jenkins的服务。   验证多次后发现有如下几方面问题。 Jenkins程序包和JDK版本不兼容&#xff08;JDK1.8对应Jenkins不要超过2.3.57&#xff09;虚…

LeetCode每日一题[C++]-303.区域和检索-数组不可变

题目描述 给定一个整数数组 nums&#xff0c;处理以下类型的多个查询: 计算索引 left 和 right &#xff08;包含 left 和 right&#xff09;之间的 nums 元素的 和 &#xff0c;其中 left < right 实现 NumArray 类&#xff1a; NumArray(int[] nums) 使用数组 nums 初…

微信小程序简单实现手势左右滑动和点击滑动步骤条功能

使用微信小程序实现左右滑动功能&#xff0c;自定义顶部图案&#xff0c;点击文字滑动和手势触屏滑动&#xff0c;功能简单&#xff0c;具体实现代码如下所示&#xff1a; 1、wxss代码&#xff1a; /* 步骤条 */ .tab-box {display: flex;flex-direction: row;position: fix…

LVS+Keepalived 高可用群集--部署

实际操作 LVS Keepalived 高可用群集 环境设备 LVS1192.168.6.88 &#xff08;MASTER&#xff09;LVS2192.168.6.87 &#xff08;BACKUP&#xff09;web1192.168.6.188web2192.168.6.189客户端192.168.6.86VIP192.168.6.180 &#xff08;一&#xff09;web服务器 首先配置…

华为汽车业务迎关键节点,长安深蓝加入HI模式,车BU预计今年扭亏

‍编辑 |HiEV 一年之前&#xff0c;同样是在电动汽车百人会的论坛上&#xff0c;余承东在外界对于华为和AITO的质疑声中&#xff0c;第一次公开阐释了华为选择走智选车模式的逻辑。 一年之后&#xff0c;伴随问界M7改款、问界M9上市&#xff0c;华为智选车模式的面貌已经发生了…