Java 设计模式系列:行为型-观察者模式

简介

观察者模式是一种行为型设计模式,又被称为发布-订阅(Publish/Subscribe)模式,它定义了对象之间的一对多依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都会得到通知并被自动更新。

观察者模式的主要优点是降低了目标对象和观察者对象间的耦合,二者可以各自独立地改变和复用,让对系统增加功能或删除功能都很方便。然而,观察者模式也存在一些缺点,比如如果一个被观察者对象有很多的直接和间接的观察者,将所有的观察者都通知到会花费很多时间;如果观察者和观察目标之间有循环依赖,观察目标会触发它们之间进行循环调用,可能导致系统崩溃;观察者模式没有相应的机制让观察者知道所观察的目标对象是怎么发生变化的,而仅仅只是知道观察目标发生了变化。

使用场景:一个抽象模型有两个方面,其中一个方面依赖于另一个方面。将这些方面封装在独立的对象中使它们可以各自独立地改变和复用。一个对象的改变将导致其他一个或多个对象也发生改变,而不知道具体有多少对象将发生改变,可以降低对象之间的耦合度。一个对象必须通知其他对象,而并不知道这些对象是谁。需要在系统中创建一个触发链,A对象的行为将影响B对象,B对象的行为将影响C对象……,可以使用观察者模式创建一种链式触发机制。

结构

在观察者模式中有如下角色:

  • Subject:抽象主题(抽象被观察者),抽象主题角色把所有观察者对象保存在一个集合里,每个主题都可以有任意数量的观察者,抽象主题提供一个接口,可以增加和删除观察者对象。
  • ConcreteSubject:具体主题(具体被观察者),该角色将有关状态存入具体观察者对象,在具体主题的内部状态发生改变时,给所有注册过的观察者发送通知。
  • Observer:抽象观察者,是观察者的抽象类,它定义了一个更新接口,使得在得到主题更改通知时更新自己。
  • ConcrereObserver:具体观察者,实现抽象观察者定义的更新接口,以便在得到主题更改通知时更新自身的状态。

案例实现

【例】微信公众号

在使用微信公众号时,大家都会有这样的体验,当你关注的公众号中有新内容更新的话,它就会推送给关注公众号的微信用户端。我们使用观察者模式来模拟这样的场景,微信用户就是观察者,微信公众号是被观察者,有多个的微信用户关注了程序猿这个公众号。

类图如下:

代码如下:

定义抽象观察者类,里面定义一个更新的方法

public interface Observer {
    void update(String message);
}

定义具体观察者类,微信用户是观察者,里面实现了更新的方法

public class WeixinUser implements Observer {
    // 微信用户名
    private String name;

    public WeixinUser(String name) {
        this.name = name;
    }
    @Override
    public void update(String message) {
        System.out.println(name + "-" + message);
    }
}

定义抽象主题类,提供了attach、detach、notify三个方法

public interface Subject {
    //增加订阅者
    public void attach(Observer observer);

    //删除订阅者
    public void detach(Observer observer);
    
    //通知订阅者更新消息
    public void notify(String message);
}

微信公众号是具体主题(具体被观察者),里面存储了订阅该公众号的微信用户,并实现了抽象主题中的方法

public class SubscriptionSubject implements Subject {
    //储存订阅公众号的微信用户
    private List<Observer> weixinUserlist = new ArrayList<Observer>();

    @Override
    public void attach(Observer observer) {
        weixinUserlist.add(observer);
    }

    @Override
    public void detach(Observer observer) {
        weixinUserlist.remove(observer);
    }

    @Override
    public void notify(String message) {
        for (Observer observer : weixinUserlist) {
            observer.update(message);
        }
    }
}

客户端程序

public class Client {
    public static void main(String[] args) {
        SubscriptionSubject mSubscriptionSubject=new SubscriptionSubject();
        //创建微信用户
        WeixinUser user1=new WeixinUser("孙悟空");
        WeixinUser user2=new WeixinUser("猪悟能");
        WeixinUser user3=new WeixinUser("沙悟净");
        //订阅公众号
        mSubscriptionSubject.attach(user1);
        mSubscriptionSubject.attach(user2);
        mSubscriptionSubject.attach(user3);
        //公众号更新发出消息给订阅的微信用户
        mSubscriptionSubject.notify("传智黑马的专栏更新了");
    }
}

优缺点

1,优点:

  • 降低了目标与观察者之间的耦合关系,两者之间是抽象耦合关系。
  • 被观察者发送通知,所有注册的观察者都会收到信息【可以实现广播机制】

2,缺点:

  • 如果观察者非常多的话,那么所有的观察者收到被观察者发送的通知会耗时
  • 如果被观察者有循环依赖的话,那么被观察者发送通知会使观察者循环调用,会导致系统崩溃

使用场景

  • 对象间存在一对多关系,一个对象的状态发生改变会影响其他对象。
  • 当一个抽象模型有两个方面,其中一个方面依赖于另一方面时。

源码中的应用

Jdk中的Observable和Observer

https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/util/Observable.java

https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/util/Observer.java

在 Java 中,通过 java.util.Observable 类和 java.util.Observer 接口定义了观察者模式,只要实现它们的子类就可以编写观察者模式实例。

1,Observable类

Observable 类是抽象目标类(被观察者),它有一个 Vector 集合成员变量,用于保存所有要通知的观察者对象,下面来介绍它最重要的 3 个方法。

  • void addObserver(Observer o) 方法:用于将新的观察者对象添加到集合中。

  • void notifyObservers(Object arg) 方法:调用集合中的所有观察者对象的 update方法,通知它们数据发生改变。通常越晚加入集合的观察者越先得到通知。

  • void setChange() 方法:用来设置一个 boolean 类型的内部标志,注明目标对象发生了变化。当它为true时,notifyObservers() 才会通知观察者。

2,Observer 接口

Observer 接口是抽象观察者,它监视目标对象的变化,当目标对象发生变化时,观察者得到通知,并调用 update 方法,进行相应的工作。

【例】警察抓小偷

警察抓小偷也可以使用观察者模式来实现,警察是观察者,小偷是被观察者。代码如下:

小偷是一个被观察者,所以需要继承Observable类

public class Thief extends Observable {

    private String name;

    public Thief(String name) {
        this.name = name;
    }
    
    public void setName(String name) {
        this.name = name;
    }

    public String getName() {
        return name;
    }

    public void steal() {
        System.out.println("小偷:我偷东西了,有没有人来抓我!!!");
        super.setChanged(); //changed  = true
        super.notifyObservers();
    }
}

警察是一个观察者,所以需要让其实现Observer接口

public class Policemen implements Observer {

    private String name;

    public Policemen(String name) {
        this.name = name;
    }
    public void setName(String name) {
        this.name = name;
    }

    public String getName() {
        return name;
    }

    @Override
    public void update(Observable o, Object arg) {
        System.out.println("警察:" + ((Thief) o).getName() + ",我已经盯你很久了,你可以保持沉默,但你所说的将成为呈堂证供!!!");
    }
}

客户端代码

public class Client {
    public static void main(String[] args) {
        //创建小偷对象
        Thief t = new Thief("隔壁老王");
        //创建警察对象
        Policemen p = new Policemen("小李");
        //让警察盯着小偷
        t.addObserver(p);
        //小偷偷东西
        t.steal();
    }
}

Spring中的Event

在Spring框架的源码中,观察者模式得到了广泛的应用,特别是在事件处理机制中。Spring的事件机制允许应用程序中的组件发布事件,并且其他组件可以订阅这些事件并在事件发生时得到通知。这种机制就是观察者模式的一个典型应用。

以下是Spring中观察者模式的主要组件和它们在源码中的体现:

  1. 事件(Event):在Spring中,事件是ApplicationEvent类的实例或其子类。这些事件包含了与事件相关的数据。
  2. 事件发布者(Event Publisher)ApplicationEventPublisher接口定义了发布事件的方法。Spring容器本身就是一个事件发布者,它会在适当的时候发布事件。
  3. 事件监听器(Event Listener):监听器是实现了ApplicationListener接口的类。它们可以订阅特定类型的事件,并在这些事件发生时执行相应的操作。

在Spring的源码中,事件机制是如何工作的呢?

  • 当某个组件需要发布事件时,它会创建一个ApplicationEvent的实例(或子类实例),并通过ApplicationEventPublisher发布这个事件。
  • ApplicationEventPublisher会查找所有订阅了该事件类型的监听器,并将事件传递给它们。
  • 每个监听器会接收到事件对象,并执行相应的onApplicationEvent方法。

这种机制允许Spring应用程序中的组件以松耦合的方式相互通信。组件不需要直接调用其他组件的方法,而是可以通过发布和监听事件来进行通信。

在Spring的源码中,你可以找到以下与观察者模式相关的类和接口:

https://github.com/spring-projects/spring-framework/blob/main/spring-context/src/main/java/org/springframework/context/

https://github.com/spring-projects/spring-framework/tree/main/spring-context/src/main/java/org/springframework/context/event

  • org.springframework.context.ApplicationEvent:所有事件的基类。
  • org.springframework.context.ApplicationEventPublisher:事件发布者的接口。
  • org.springframework.context.ApplicationListener:事件监听器的接口。
  • org.springframework.context.event.SimpleApplicationEventMulticaster:一个实现了ApplicationEventPublisher接口的类,它负责将事件分发给相应的监听器。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/466852.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

configmap nginx.conf报错:invalid number of arguments in “proxy_set_header“

追加>> cat << EOF >> a.txt ###############gradle############## abcdefg chineewew ###############gradle############## EOF 覆盖> cat << EOF > /etc/profile ###############gradle############## 121321231 121231 ###############grad…

数据结构与算法Bonus-KNN问题的代码求解过程

一、问题提出 &#xff08;一&#xff09;要求 1.随机生成>10万个三维点的点云&#xff0c;并以适当方式存储 2.自行实现一个KNN算法&#xff0c;对任意Query点&#xff0c;返回最邻近的K个点 3.不允许使用第三方库(e.g.flann&#xff0c;PCL,opencv)! 4.语言任选(推荐…

专业140+总分410+南京大学851信号与系统考研经验南大电子信息与通信集成,电通,真题,大纲,参考书。

今年分数出来还是有点小激动&#xff0c;专业851信号与系统140&#xff08;感谢Jenny老师辅导和全程悉心指导&#xff0c;答疑&#xff09;&#xff0c;总分410&#xff0c;梦想的南大离自己越来越近&#xff0c;马上即将复试&#xff0c;心中慌的一p&#xff0c;闲暇之余&…

【活动】政府工作报告视角下的计算机行业发展前瞻与策略探讨

&#x1f308;个人主页: 鑫宝Code &#x1f525;热门专栏: 闲话杂谈&#xff5c; 炫酷HTML | JavaScript基础 ​&#x1f4ab;个人格言: "如无必要&#xff0c;勿增实体" 文章目录 引言正文计算机行业在政府工作报告中的定位与发展态势政策导向解析未来机遇展望…

springboot整合springsecurity,从数据库中认证

概述&#xff1a;springsecurity这个东西太容易忘了&#xff0c;这里写点东西&#xff0c;避免忘掉 目录 第一步&#xff1a;引入依赖 第二步&#xff1a;创建user表 第三步&#xff1a;创建一个用户实体类&#xff08;User&#xff09;和一个用于访问用户数据的Repository…

一文教会你SpringBoot是如何启动的

SpringBoot启动流程分析 流程图 源码剖析 运行Application.run()方法 我们在创建好一个 SpringBoot 程序之后&#xff0c;肯定会包含一个类&#xff1a;xxxApplication&#xff0c;我们也是通过这个类来启动我们的程序的&#xff08;梦开始的地方&#xff09;&#xff0c;而…

【超详细图文讲解】如何利用VMware创建CentOS虚拟机(包括如何更改网络设置 + 远程访问虚拟机方法)

文章目录 前言1. 准备相关软件环境1.1 获取 ISO 镜像包1.2 VMware 的安装 2. 使用 VMware 安装 CentOS3. 初始化虚拟机4. 虚拟机网络的设置4.1 虚拟机的三种网络连接模式桥接模式NAT 模式仅主机模式 4.2 如何更改网络设置 5. 远程访问虚拟机的方法5.1 使用 cmd 进行访问5.2 使用…

LSS (Lift, Splat, Shoot)

项目主页 https://nv-tlabs.github.io/lift-splat-shoot 图1&#xff1a;本文提出一种模型&#xff0c;给定多视角相机数据 (左)&#xff0c; 直接在鸟瞰图 (BEV) 坐标系(右)中推理语义。我们展示了车辆分割 (蓝色)&#xff0c;可驾驶区域 (橙色) 和车道分割 (绿色) 的结果。然…

外包干了28天,技术退步明显......

说一下自己的情况&#xff0c;本科生&#xff0c;19年通过校招进入深圳某软件公司&#xff0c;干了接近4年的功能测试&#xff0c;今年年初&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测试&a…

<DFS剪枝>数字王国之军训排队

DFS剪枝 其实就是将搜索过程一些不必要的部分直接剔除掉。 剪枝是回溯法的一种重要优化手段&#xff0c;往往需要先写一个暴力搜索&#xff0c;然后找到某些特殊的数学关系&#xff0c;或者逻辑关系&#xff0c;通过它们的约束让搜索树尽可能浅而小&#xff0c;从而达到降低时间…

程序员在公司学习新项目的5步法:

1 了解业务 - 系统所在行业&#xff1f; - 系统是做什么的&#xff1f; - 系统主要面向的人群是谁&#xff1f; - 主要提供了哪些功能&#xff1f; - 系统设计的关键业务流程是什么样的&#xff1f; - 项目面临的挑战是什么&#xff1f; - 项目未来规划是什么&#xff1f; 2 …

HarmonyOS(鸿蒙)快速入门

一:下载开发工具 鸿蒙的开发工具叫DevEco 下载点击 其他部分都一直next 就行,这个页面出现的install 建议都点击install 然后单独选择安装目录 可能存在的问题 就是之前安装nodejs&#xff08;比如自己开发web或者RN等情况&#xff09;版本低 等情况 所以建议你单独安装一次 …

c语言商品库存管理系统

定制魏:QTWZPW,获取更多源码等 目录 题目 功能概述 数据结构 用户界面 ​编辑 主要函数 数据存储 完整代码 总结 题目 实现一个商品库存管理系统,可以对商品进行入库、出库、删除、修改、查询以及显示所有商品信息的操作。 功能概述 系统包含以下主要功能: 商品…

Web基础06-AJAX,Axios,JSON数据

目录 一、AJAX 1.概述 2.主要作用 3.快速入门 4.AJAX的优缺点 &#xff08;1&#xff09;优点 &#xff08;2&#xff09;缺点 5.同源策略 二、Axios 1.概述 2.快速入门 3.请求方式别名 三、JSON 1.概述 2.主要作用 3.基础语法 4.JSON数据转换 &#xff08;1…

【MLLM+轻量多模态模型】24.02.Bunny-v1.0-2B-zh: 轻量级多模态语言模型 (效果一般)

24.02 北京人工智能研究院&#xff08;BAAI&#xff09;提出以数据为中心的轻量级多模态模型 arxiv论文&#xff1a;2402.Efficient Multimodal Learning from Data-centric Perspective 代码&#xff1a;https://github.com/BAAI-DCAI/Bunny 在线运行&#xff1a;https://wis…

day6 3/18

2.试编程&#xff1a; 封装一个动物的基类&#xff0c;类中有私有成员&#xff1a;姓名&#xff0c;颜色&#xff0c;指针成员年纪 再封装一个狗这样类&#xff0c;共有继承于动物类&#xff0c;自己拓展的私有成员有&#xff1a;指针成员&#xff1a;腿的个数&#xff08;整…

【JavaEE -- 多线程进阶 - 面试重点】

多线程进阶 1. 常见锁策略1.1 乐观锁和悲观锁1.2 轻量级锁和重量级锁1.3 自旋锁和挂起等待锁synchronized具有自适应能力1.4 普通互斥锁和读写锁1.5 公平锁和非公平锁1.6 可重入锁和不可重入锁 2. Synchronized原理&#xff08;特点、加锁过程、自适应&#xff09;2.1 Synchron…

数据结构(三)——栈

三、栈、队列和数组 3.1 栈 3.1.1 栈的基本概念 线性表是具有相同数据类型的n&#xff08;n≥0&#xff09;个数据元素的有限 序列&#xff0c;其中n为表长&#xff0c;当n 0时线 性表是一个空表。若用L命名线性表&#xff0c;则其一般表示为 L (a1, a2, … , ai , ai1, ……

【STL源码剖析】【2、空间配置器——allocator】

文章目录 1、什么是空间配置器&#xff1f;1.1设计一个简单的空间配置器&#xff0c;JJ::allocator 2、具备次配置力( sub-allocation)的 SGI 空间配置器2.1 什么是次配置力2.2 SGI标准的空间配置器&#xff0c;std::allocator2.2 SGI特殊的空间配置器&#xff0c;std::alloc2.…

ARM汇编与逆向工程 蓝狐卷 基础知识

文章目录 前言内容简介作者简介译者简介目录 前言 与传统的CISC&#xff08;Complex Instruction Set Computer&#xff0c;复杂指令集计算机&#xff09;架构相比&#xff0c;Arm架构的指令集更加简洁明了&#xff0c;指令执行效率更高&#xff0c;能够在更低的功耗下完成同样…