进程的概念 | PCB | Linux下的task_struct | 父子进程和子进程

 在讲进程之前首先就是需要去回顾一下我们之前学的操作系统是干嘛的,首先操作系统是一个软件,它是对上提供一个良好高效,稳定的环境的,这是相对于用户来说的,对下是为了进行更好的软硬件管理的,所以操作系统是一个进行软硬件管理的软件。

实际上我们的硬盘,键盘和显示器这些是我们的硬件,但是操作系统是不能直接对我们的硬件进行控制,所以操作系统和我们的硬件中还有一层就是我们的驱动程序,那还有就是我们的用户是不能直接对我们的操作系统进行访问的,都会通过系统调用的方式来对我们的操作系统进行访问,这些都是我们来学习今天文章内容的前言部分,那下面开始我们对进程内容的了解。

进程的概念

进程简单点来了解我们可以就认为它就是一个可执行的程序,也就是磁盘里的文件,然后进行运行起来,那我们在学C语言的时候都知道我们的可执行文件先是在磁盘里的,我们运行的时候,是要把磁盘文件加载到内存当中的,然后我们的内存里存的是这个可执行文件的数据,也就是代码加上数据。

但是被加载到内存当中的程序对进程的描述是不完整的,下面我来画张图,也就能方便大家来了解进程了。

先描述再组织

操作系统中里面可能一下子加载了很多的进程,就像我们的任务管理器是一样的,当我们打开任务管理器的时候我们就不难发现可以存在很多个进程,所以操作系统里面如果有大量的进程也是很正常的。所以讲一个程序加载到内存的时候,不仅仅是要把代码和数据加载到内存当中,同时也会产生一个结构体我们叫他为PCB(process control block),好像是叫这个。反正它是一个结构体,里面存放的是这个进程的属性加上下一个PCB结构体的指针,还有就是一个内存指针,指向的就是我们的内存里的代码和数据。

看下面的这个图

所以操作系统对进程的管理最后就是对链表的增删查改

最后就是我们讲了这么多,进程其实就是  

进程 == PCB结构体 + 代码和数据

这里也就是符合我们讲的先描述(结构体) 再组织(链表)

这里再给大家加个餐,我们之前说操作系统其实就是一款对软硬件进行管理的软件,我们也可以认为操作系统再我们电脑开机的时候也是存放在我们的磁盘当中的,我们认为它就是一个二进制的文件。

所以开机的时候我们发现我们的电脑不是马上开机的,而是等待一会然后进行开机的,那么这几秒的时间就是把操作系统的这个软件的数据拷贝到内存当中去的,然后我们的操作系统就会根据我们的进程来进行malloc出PCB的结构体,有几个进程就malloc几个PCB出来,最后再进行链接。

所以操作系统对进程的管理不是对我们的可执行程序进行管理,而是对我们的结构体PCB进行管理的

  

系统的接口

操作系统如果是想给我们提供服务的话,我们用户是不能直接对我们的操作系统进行访问的,原因呢就是如果我们改动我们操作系统中的数据和一些数据结构的化,我们的操作系统就不能给我们用户提供很好的服务,就比如操作系统其实就是我们的银行,如果我们要去存钱或者取钱的时候,难道银行是直接把小金库暴露给我们吗,我们是直接用银行电脑给我们的余额加上5个0的吗,那这样不就乱套了吗,所以我们如果想要访问我们的操作系统的时候,我们就需要利用好我们的系统调用接口或者标准库来对我们的操作系统进行访问,如果我们直接对操作系统进行访问的化就和我们直接去抢银行是没有区别的。

 

简单点我们就可以这样认为这个是操作系统的内核

总结:我们操作系统要运行我们的进程的时候,这个排队的过程就是让我们的PCB结构体进行排队,而不是内存中的代码和数据进行排队。

 理解一个概念:什么是动态运行?

我么可以理解为PCB在不同的队列中,进程就可以访问不同的空间。

进程的查看

引入话题

在我们考上大学的时候,我们的大学(监狱,不想上学)都会给新生一个编号

 也就是我们的学号,我们每个人都是有一个不一样的学号,那么进程也是这个样子的,所以我们需要了解的就是进程的标识符我们可以称作为pid。

pid : 在每一个进程中,都会存在唯一的标识符也就是我pid

我们可用用指令来查看进程的pid

这是一个Makefile里面写的代码,还有一个就是我们.c文件里写的代码,我们在我们的右边重新开一个,方便我们进行观察,这样我们的代码就跑起来,这个时候就是一个进程在跑,我们在左边可以执行指令来进行查看。

 ps ajx | head -1  && ps ajx | grep myprocess | grep -v grep
 

 grep -v grep 是不查看该条指令的进程,因为我们的指令其实就是一个可执行的文件,也是一个进程,所以执行这个就可以屏蔽该进程。

我们都知道,我们的代码在进行预处理,编译,汇编,还有链接之后就会形成可执行文件,我们可以用指令开查看我们的文件是不是可执行文件。

file之和发现它是一个可执行的文件。

通过proc目录来查看进程信息

在 / 下的路径下有一个proc,我们也可以在这个里面来查看进程。

我们上面引进的pid就可以用上了,pid是我们进程的唯一标识符,认识函数getpid,通过man手册进行查询

 这是获取pid的函数,我们上面的指令也可以查看pid

 ps ajx | head -1  && ps ajx | grep myprocess | grep -v grep

当我们进程在跑的时候,上面的这个pid也就是我们进程的标识符,我们也可以在代码里获取pid,来改写一下代码。

 这里大家可能是会有疑问的,因为我上面的进程pid已经进行改变了,这是为什么呢???

因为我们每次执行我们的代码的时候,它就是创建出一个进程,所以pid当然是不一样的。

我们这个时候也就可以在proc的目录下查看一些到底是不是存在这个进程呢。

proc下也是真的有这个目录的(哇,真的是你啊(好大声)) 。

我们也可以查看一些他们的属性,加上 -al就可以来看看细节了。

我们只需要关注图中画红的部分就可以了。exe其实就是可执行文件,因为这些文件都是该进程下的,我们知道我们的进程 == 代码和数据 + 内核的数据结构,每个进程都有相对于的task_struct

也就是我们之前讲的PCB,PCB里是有它的属性的,这个是我们知道,所以exe相当于告知该进程对应的磁盘上哪个是可执行文件,也就是对应的磁盘文件。

那cwd就是当前的工作路径,这个和我们的pwd是同一个路径。

做个小实验

现在我们就来改改我们的代码,我们在C语言的时候是讲过fopen函数的时候,如果我们是以写的方式打开的化,没有这个文件的时候也是会创建出新的文件出来的,而且是在当前工作路径下创建的,我们可以来看看代码应该怎么进行修改呢,

 

我们的代码进行这样子修改后发现在当前的路径下也是创建出来新的文件了,所以cwd就是指的当前的工作的路径。

获取父进程的pid

前面也是讲过我们是如何获得进程的pid,但是我们也有办法来获得它的父进程的pid在执行下面的进程的时候,我们看到的ppid就父进程的pid

 ps ajx | head -1  && ps ajx | grep myprocess | grep -v grep

那也是有办法来查看我们的ppid,就是函数getppid,用man手册进行查询来看看。

这个就是我们来查询ppid的函数,直接来尝试怎么使用。

我们就可以查询到我们的父进程的pid,而且发现父进程每次重新启动的时候都是不变的,。 

发现每次的子进程的pid是改变了,但是父进程的pid是没有进行改变的

这是为什么呢,我们来尝试看看它的父进程是怎么个事。

竟然就是我们的bash进程,那我们是不是可以猜测很多父进程的父进程他们都是-bash

答案是的 ,他们都是-bash的子进程

使用fork()函数创建子进程

fork函数就是专门创建子进程而生的!!!!!

我们可以用man手册进行查询。

FORK(2)                         Linux Programmer's Manual                        FORK(2)

NAME
       fork - create a child process

SYNOPSIS
       #include <unistd.h>

       pid_t fork(void);

DESCRIPTION
       fork()  creates  a  new  process  by  duplicating  the  calling process.  The new
       process, referred to as the child, is an exact duplicate of the calling  process,
       referred to as the parent, except for the following points:

       *  The child has its own unique process ID, and this PID does not match the ID of
          any existing process group (setpgid(2)).

       *  The child's parent process ID is the same as the parent's process ID.

       *  The child does not inherit its parent's memory locks (mlock(2), mlockall(2)).

       *  Process resource utilizations (getrusage(2)) and CPU time counters  (times(2))
          are reset to zero in the child.

       *  The child's set of pending signals is initially empty (sigpending(2)).

       *  The child does not inherit semaphore adjustments from its parent (semop(2)).

       *  The child does not inherit record locks from its parent (fcntl(2)).

       *  The  child  does  not  inherit timers from its parent (setitimer(2), alarm(2),
          timer_create(2)).

       *  The child does not inherit outstanding asynchronous I/O  operations  from  its
          parent  (aio_read(3),  aio_write(3)), nor does it inherit any asynchronous I/O
          contexts from its parent (see io_setup(2)).

       The process attributes in the preceding list are all specified  in  POSIX.1-2001.
       The  parent  and  child  also differ with respect to the following Linux-specific
 Manual page fork(2) line 1 (press h for help or q to quit)

凑个子树哈哈哈哈哈哈。

我们可以看到引入的头文件就是unistd这个头文件。

我们可以往下看,发现fork的返回值是有两个返回值的,这个意味着我们有两个返回值(好像什么都没说),我们可以在在代码里看看它是怎么返回两个值的,首先就是他们fork后面创建出子进程之和他们的代码是共享的(包括return0)

我们先写一个代码来看看到底是怎么实现的,

 #include <stdio.h>
  2 #include <sys/types.h>
  3 #include <unistd.h>
  4 //int main()
  5 //{
  6 //  while(1)
  7 //  {
  8 //    printf("I am process : pid %d  ppid %d\n",getpid(),getppid());
  9 //    sleep(1);
 10 //  }
 11 //}
 12 //
 13 //
 14 int main()
 15 {
 16   fork();
 17   printf("hello students\n");                                                          
 18 }
~

我们来看看效果是怎么样的呢。

我去,竟然是打印了两次,那就更能确定一点的就是我们这里是存在连个进程的,不信我们可以使用查看进程的指令来看看,但是因为这个代码是一下子就结束了,那么我们的进程也被kill,所以我们是无法查看的,那在写一个其他的代码。

 

代码

int main()
 21 {
 22   printf("I am process\n");
 23   sleep(3);
 24   pid_t p = fork();
 25   if(p ==0)
 26   {
 27     //child
 28     while(1)
 29     {
 30       printf("I am child process pid %d  ppid %d\n",getpid(),getppid());
 31       sleep(1);                                                                        
 32     }
 33   }
 34   else
 35   {
 36 
 37     while(1)
 38     {
 39       printf("I am parent process pid %d  ppid %d\n",getpid(),getppid());
 40       sleep(1);
 41     }
 42 
 43   }
 44 
 45   
 46 }

我们看效果和代码发现为什么它能有两个返回值,又能进行if的语句,也能执行fork的语句,如果单单是从语言角度去看的化就不是这个样子的,所以我们应该是来看fork函数,fork函数就是创建子进程的,我们可以理解为fork之后的代码是共享的,因为我们每个函数包括是main函数也是有返回值的,所i有有两个返回值,那返回值为0的时候就是child,如果返回值是>0的时候就是paernt的进程,这样的化就会产生两个进程。所以会产生的进程就是两个。

那么我们还有个问题就是fork函数之后,我们的操作系统是做了什么呢。

我们知道进程的组成就是task_struct +进程的代码和数据

我们可以认为子进程是继承了父进程的代码和数据的,但是还是要强调的是我们代码是继承的,但是数据得独立,这样也就能造成为什么我们的返回值是两个的原因。代码共享就会导致一定有两个返回值。

今天的分享就到这里了。我们下次再见。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/466439.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

es文档操作命令

文档操作 documents 创建数据&#xff08;put&#xff09; 向 user 索引下创建3条数据 PUT /user/_doc/1 {"name":"zhangsan","age":18,"sex":"男","info":"一顿操作猛如虎&#xff0c;一看工资2500"…

关于卷积神经网络特征可视化

卷积神经网络CNN&#xff0c;一个大号/深层的&#xff0c;现代的&#xff0c;黑箱的&#xff0c;信号/图像处理器。 简单讲解如何将图像输入到卷积神经网络CNN并显示网络不同层的激活图&#xff0c;并通过将激活图与原始图像进行比较以探索网络学习哪些特征 本例来源于Mathwo…

IP代理技术革新:探索数据采集的新路径

引言&#xff1a; 随着全球化进程不断加深&#xff0c;网络数据采集在企业决策和市场分析中扮演着愈发重要的角色。然而&#xff0c;地域限制和IP封锁等问题常常给数据采集工作带来了巨大挑战。亿牛云代理服务凭借其强大的网络覆盖和真实住宅IP资源&#xff0c;成为解决这些问…

大A为何频繁跳水,Python量化1200W条交易数据给你答案!| 邢不行

这是邢不行第 110 期量化小讲堂的分享 作者 | 邢不行、密斯锌硒 常看我文章的读者应该能发现&#xff0c;我介绍过的量化策略大多都会在开盘时买入。 比如小市值策略和散户反着买策略&#xff1a; 小市值策略文章 散户反着买策略 它们都会在每个周期的第一个交易日开盘去…

Git Bash命令初始化本地仓库,提交到远程仓库

git init&#xff1a;初始化空仓库 // 初始化一个空仓库或者重新初始化一个存在的仓库 git init git remote // 为当前本地仓库添加一个远程仓库地址 git remote add origin https://gitee.com/xxx/demo.git git pull // 从设置好链接的远程仓库拉去已经存在的数据&#xff0c;…

Python自动化测试——postman,jmeter接口测试

关于众所postman&#xff0c;jmeter&#xff0c;做自动化测试的我想对这两个词并不陌生。大家都知道postman用来做接口测试很方便,下面我们就用一些例子来演示一下它该如何进行接口测试&#xff1a; 首先我们来介绍一下接口测试的概念&#xff1a; 1、什么是接口测试&#xf…

被围绕的区域c++

题目 链接&#xff1a;登录—专业IT笔试面试备考平台_牛客网 来源&#xff1a;牛客网 输入 4 4 XXXX XOOX XOXX XXOX输出 XXXX XXXX XXXX XXOX思路 由题知边界上的"O"和 与边界的"O"相连的"O"不会被标记&#xff0c;我们可以用一个数组st[][]标…

SpringBoot项目如何打包成war包,并部署在tomcat上运行

项目场景&#xff1a; 正常情况下&#xff0c;我们开发 SpringBoot 项目&#xff0c;由于内置了Tomcat&#xff0c;所以项目可以直接启动&#xff0c;部署到服务器的时候&#xff0c;直接打成 jar 包&#xff0c;就可以运行了。 有时我们会需要打包成 war 包&#xff0c;放入外…

23.1 微服务理论基础

23.1 微服务基础 1. 微服务介绍2. 微服务特点3. 微服务优缺点4. 微服务两大门派5. 微服务拆分6. 微服务扩展6.1 服务扩展6.2 按需扩展7. 微服务重要模块******************************************************************************************************************

【华为Datacom数通认证】HCIA-HCIP-HCIE

华为认证课程概述 华为认证是华为技术有限公司(简称"华为")基于"平台生态"战略&#xff0c;围绕"云-管-端"协同的新ICT技术架构&#xff0c;打造的业界覆盖ICT领域最广的认证体系&#xff0c;包含"ICT技术架构认证"、"ICT开发者…

【鸿蒙HarmonyOS开发笔记】动画过渡效果之布局更新动画

概述 动画的原理是在一个时间段内&#xff0c;多次改变UI外观&#xff0c;由于人眼会产生视觉暂留&#xff0c;所以最终看到的就是一个“连续”的动画。UI的一次改变称为一个动画帧&#xff0c;对应一次屏幕刷新&#xff0c;而决定动画流畅度的一个重要指标就是帧率FPS&#x…

怎么看一手伦敦银多少钱?

做伦敦银投资的朋友需要搞清楚“一手伦敦银多少钱”的问题&#xff0c;这也是伦敦银交易的基础问题。为什么需要搞清楚这个基础问题呢&#xff1f;有些基础问题我们不需要搞懂&#xff0c;但是关于一手伦敦银多少钱却需要搞清楚&#xff0c;因为这决定了投资者的资金利用率。 关…

Java-Java基础学习(1)-重写和多态对比分析

Java中的重写&#xff08;Override&#xff09;和多态&#xff08;Polymorphism&#xff09;是两个核心概念&#xff0c;它们在面向对象编程中扮演着非常重要的角色。下面我将对这两个概念进行详细的对比分析&#xff0c;包括它们的区别、联系以及应用场景&#xff0c;并附上相…

为什么关掉了公众号留言功能?

为什么公众号没有留言功能&#xff1f;根据要求&#xff0c;自2018年2月12日起&#xff0c;新申请的微信公众号默认无留言功能。有些人听过一个说法&#xff1a;公众号粉丝累计到一定程度或者原创文章数量累计到一定程度就可以开通留言功能。其实这个方法是2018年之前才可以&am…

2024年阿里云服务器所在机房位置详细说明

阿里云服务器地域和可用区有哪些&#xff1f;阿里云服务器地域节点遍布全球29个地域、88个可用区&#xff0c;包括中国大陆、中国香港、日本、美国、新加坡、孟买、泰国、首尔、迪拜等地域&#xff0c;同一个地域下有多个可用区可以选择&#xff0c;阿里云服务器网aliyunfuwuqi…

Linux应用 线程同步之自旋锁

1、概念 1.1 定义 自旋锁&#xff08;Spinlock&#xff09;是一种特殊的锁机制&#xff0c;当线程尝试获取锁而锁不可用时&#xff0c;线程会进入忙等待&#xff08;即循环检查锁是否可用&#xff09;&#xff0c;而不是进入睡眠状态。这种机制适用于锁持有时间非常短的场景&…

深度学习指标| 置信区间、Dice、IOU、MIOU、Kappa

深度学习部分指标介绍 置信区间混淆矩阵DiceIOU和MIOUKappa 置信区间 95%CI指标 读论文的时候&#xff0c;常会看到一个“95%CI”的评价指标。 其中CI指的是统计学中的置信区间&#xff08;Confidence interval&#xff0c;CI&#xff09;。在统计学中&#xff0c;一个概率样…

用python写网络爬虫:2.urllib库的基本用法

文章目录 urllib库抓取网页data参数timeout参数更灵活地配置参数登录代理Cookies 参考书籍 建议新入门的小伙伴先看我同一专栏的文章&#xff1a;用python写网络爬虫&#xff1a;1.基础知识 urllib库 urllib是python中一个最基础的HTTP库&#xff0c;一般是内置的&#xff0c;…

Linux网络基础2

目录 实现网络版本计算器 自己定协议实现用json协议实现 重谈OSI七层模型HTTP协议 域名介绍url介绍HTTP请求和响应 实现一个简易的HTTP服务器 实现简易Http服务器初级版实现简易Http服务器中级版 实现一个简易的HTTP服务器最终版 请求方法HTTP状态码HTTP常见的Header 实现网…

【鸿蒙HarmonyOS开发笔记】常用组件介绍篇 —— Progress进度条组件

概述 Progress为进度条组件&#xff0c;用于显示各种进度。 参数 Progress组件的参数定义如下 Progress(options: {value: number, total?: number, type?: ProgressType})● value value属性用于设置当前进度值。 ● total total属性用于设置总值。 ● type type属…