PyTorch深度学习实战(39)——小样本学习

PyTorch深度学习实战(39)——小样本学习

    • 0. 前言
    • 1. 小样本学习简介
    • 2. 孪生网络
      • 2.1 模型分析
      • 2.2 数据集分析
      • 2.3 构建孪生网络
    • 3. 原型网络
    • 3. 关系网络
    • 小结
    • 系列链接

0. 前言

小样本学习 (Few-shot Learning) 旨在解决在训练集中只有很少样本的情况下进行分类和推理的问题。传统的机器学习方法通常要求大量的标记样本来训练模型,但在现实世界中,很多场景下我们只能获得非常有限的样本。在小样本学习中,我们希望通过利用已有的少量样本和先验知识来进行泛化,以便在面对新的、未见过的类别时能够做出准确的预测。这就要求模型能够从有限的训练样本中提取出有用的信息,并能够将这些信息应用到新类别的样本中去。在本节中,将介绍孪生、原型和关系网络的原理,并使用 PyTorch 实现孪生网络。

1. 小样本学习简介

小样本学习 (Few-shot Learning) 是一种用于在面对较少的数据时进行分类或识别任务的机器学习方法。传统机器学习算法需要大量数据来训练模型,并且可能会过拟合数据或无法泛化到新数据。而小样本学习则通过从较少的样本中学习如何分类或识别对象来解决这个问题。其基本思想是从已有的类别中提取出一些经验,进而利用这些经验去识别出一个新的类别。
假如我们只有 10 张关于猫的图像,并要求确定一张新图像是否属于猫类别,在人眼看来可以轻松地对此类任务进行分类,但深度学习算法通常需要成百上千的标记样本才能准确分类。
有多种元学习 (Meta-Learning) 算法能够解决小样本学习问题。在本节中,我们将了解用于解决小样本学习问题的孪生网络 (Siamese network)、原型网络 (prototypical network) 和关系网络 (relation network)。这三种算法都旨在学习比较两张图像,并根据它们的相似度得到一个分数。小样本分类过程中如下所示:

小样本分类
在以上数据集中,在训练时向网络模型展示了每个类别的几张图像,并要求模型根据这些训练图像预测新图像的类别。如果使用预训练模型来解决此类问题,鉴于可用数据量很少,此类模型可能很快就会过拟合。
我们可以通过多种指标、模型等方法解决这一问题,在本节中,将学习基于指标的架构,这类架构会提出了一个最优指标,例如欧几里得距离或余弦相似度,将相似的图像归为一组,并在新图像上进行预测。N-shot k-class 分类是指有 N 张图像用于训练网络,每个类别有 k 个样本。

2. 孪生网络

孪生网络 (Siamese network) 是一种常用于计算机视觉的神经网络,主要用于解决两个输入之间的相似度问题。该网络通常由两个共享权重的子网络组成,每个子网络都接收到一个不同的输入,然后提取其特征并将这些特征合并起来。

2.1 模型分析

接下来,我们介绍孪生网络的原理,并使用孪生网络识别只有少数几张训练图像的同一个人物的图像。孪生模型算法流程如下:

  • 通过卷积网络传递图像
  • 通过相同的神经网络传递另一张图像
  • 计算两个图像的编码向量
  • 计算两个编码向量之间的差异
  • 通过 sigmoid 激活传递差异向量得到相似性得分,表示两幅图像是否相似

孪生 (Siamese) 一词表示通过孪生网络 (Siamese network) (复制网络处理两张图像)传递两张图像,以获取每个图像的编码向量。此外,比较两个图像的编码向量以获取两个图像的相似度分数,如果相似度得分(或差异度得分)超过指定阈值,则认为这些图像属于同一个类别(同一人物)。
在本节中,我们将学习使用 PyTorch 实现孪生网络,以预测一个人物图像是否与训练数据库中的参考图像相匹配,模型构建策略如下:
模型构建策略

  • 获取数据集
  • 创建数据,属于同一个人物的两张图像的差异度较小,而不同人物的图像之间的差异度较高
  • 构建卷积神经网络 (Convolutional Neural Networks, CNN)
  • CNN 模型的总损失值为对应于分类损失的损失值(如果图像属于同一个人物)和两幅图像之间的距离相加,在本节中,使用对比损失
  • 训练模型

2.2 数据集分析

为了构建孪生网络,使用人脸图像数据集。训练数据中包含 38 个文件夹(每个文件夹对应不同的人物),每个文件夹包含 10 张属于同一人物的图像样本。测试数据包括 3 张不同人物的 3 个文件夹,每个文件夹有 10 张图像。数据集下载地址:https://pan.baidu.com/s/111fWoBP-k9AAdWKw6kHeNA,提取码:udcr

2.3 构建孪生网络

接下来,根据以上策略使用 PyTorch 实现孪生网络,预测图像对应类别,其中图像类别仅在训练数据中出现过少数几次。

(1) 导入相关库和数据集:

import torch
from torch import nn, optim
import cv2
from torch.utils.data import DataLoader, Dataset
from glob import glob
import random
import numpy as np
from matplotlib import pyplot as plt
import torch.nn.functional as F
device = 'cuda' if torch.cuda.is_available() else 'cpu'

def parent(filename):
    return filename.split('/')[-2]

def fname(filename):
    return filename.split('/')[-1]

(2) 定义数据集类 SiameseNetworkDataset

__init__ 方法接受图像的件夹和要执行的图像转换 (transform) 作为输入:

class SiameseNetworkDataset(Dataset):
    def __init__(self, folder, transform=None, should_invert=True):
        self.folder = folder
        self.items = glob(f'{self.folder}/*/*')
        self.transform = transform

定义 __getitem__ 方法:

    def __getitem__(self, ix):
        itemA = self.items[ix]
        person = fname(parent(itemA))
        same_person = random.randint(0, len(person))
        if same_person:
            itemB = random.choice(glob(f'{self.folder}/{person}/*'))
        else:
            while True:
                itemB = random.choice(self.items)
                if person != fname(parent(itemB)):
                    break
        imgA = cv2.imread(itemA, 0)
        imgB = cv2.imread(itemB, 0)
        if self.transform:
            imgA = self.transform(imgA)# .permute(2,0,1)
            imgB = self.transform(imgB)
        return imgA, imgB, np.array([1-same_person])

在以上代码中,获取并返回两张图像—— imgAimgB,如果两张图像属于同一人物,则返回的第三个输出为 0,否则,返回 1

定义 __len__ 方法:

    def __len__(self):
        return len(self.items)

(3) 定义要执行的图像转换,并为训练、验证数据准备数据集和数据加载器:

from torchvision import transforms

trn_tfms = transforms.Compose([
    transforms.ToPILImage(),
    transforms.RandomHorizontalFlip(),
    transforms.RandomAffine(5, (0.01,0.2),
                            scale=(0.9,1.1)),
    transforms.Resize((100,100)),
    transforms.ToTensor(),
    transforms.Normalize((0.5), (0.5))
])

val_tfms = transforms.Compose([
    transforms.ToPILImage(),
    transforms.Resize((100,100)),
    transforms.ToTensor(),
    transforms.Normalize((0.5), (0.5))
])

trn_ds = SiameseNetworkDataset(folder="face-detection/data/faces/training/", transform=trn_tfms)
val_ds = SiameseNetworkDataset(folder="face-detection/data/faces/testing/", transform=val_tfms)

trn_dl = DataLoader(trn_ds, shuffle=True, batch_size=64)
val_dl = DataLoader(val_ds, shuffle=False, batch_size=64)

(4) 定义神经网络架构。

定义卷积块 (convBlock):

def convBlock(ni, no):
    return nn.Sequential(
        nn.Dropout(0.2),
        nn.Conv2d(ni, no, kernel_size=3, padding=1, padding_mode='reflect'),
        nn.ReLU(inplace=True),
        nn.BatchNorm2d(no),
    )

定义孪生网络架构,接受输入并返回五维编码:

  • 网络是由两个相同的卷积神经网络组成,这两个子网络共享权重
  • 对于每个输入图像,都经过相同的卷积神经网络进行特征提取,并获得一个编码向量
  • 两个编码向量通过距离计算层进行比较,获取它们之间的相似度得分
  • 最后,将两个编码之间的差异度得分送入全连接层,输出一个五维编码向量
class SiameseNetwork(nn.Module):
    def __init__(self):
        super(SiameseNetwork, self).__init__()
        self.features = nn.Sequential(
            convBlock(1,4),
            convBlock(4,8),
            convBlock(8,8),
            nn.Flatten(),
            nn.Linear(8*100*100, 500), nn.ReLU(inplace=True),
            nn.Linear(500, 500), nn.ReLU(inplace=True),
            nn.Linear(500, 5)
        )

    def forward(self, input1, input2):
        output1 = self.features(input1)
        output2 = self.features(input2)
        return output1, output2

(5) 定义 ContrastiveLoss 类:

class ContrastiveLoss(torch.nn.Module):
    def __init__(self, margin=2.0):
        super(ContrastiveLoss, self).__init__()
        self.margin = margin

代码中的 margin 类似于 SVM 中的边距,我们希望属于两个不同类别的数据点之间的 margin 值尽可能高。

定义前向传播方法 forward

    def forward(self, output1, output2, label):
        euclidean_distance = F.pairwise_distance(output1, output2, keepdim = True)
        loss_contrastive = torch.mean((1-label) * torch.pow(euclidean_distance, 2) +
                                      (label) * torch.pow(torch.clamp(self.margin - euclidean_distance, min=0.0), 2))
        acc = ((euclidean_distance > 0.6) == label).float().mean()
        return loss_contrastive, acc

在以上代码中,获取两个不同图像的编码向量,output1output2 并计算它们的欧氏距离 eucledian_distance。然后,计算对比损失 loss_contrastive,该损失函数将惩罚同一标签下图像之间欧氏距离过大的情况,并且对于不同标签下图像之间欧氏距离过小的情况也进行了惩罚,同时还需要加上了自定义的 self.margin 值。也就是说,对于同一标签下的两个图像,如果它们之间的欧氏距离超过一定阈值,则会受到惩罚;对于不同标签下的两个图像,如果它们之间的欧氏距离小于一定阈值,则同样会受到惩罚。

(6) 定义在批数据上进行训练和验证模型的函数:

def train_batch(model, data, optimizer, criterion):
    imgsA, imgsB, labels = [t.to(device) for t in data]
    optimizer.zero_grad()
    codesA, codesB = model(imgsA, imgsB)
    loss, acc = criterion(codesA, codesB, labels)
    loss.backward()
    optimizer.step()
    return loss.item(), acc.item()

@torch.no_grad()
def validate_batch(model, data, criterion):
    imgsA, imgsB, labels = [t.to(device) for t in data]
    codesA, codesB = model(imgsA, imgsB)
    loss, acc = criterion(codesA, codesB, labels)
    return loss.item(), acc.item()

(7) 定义模型、损失函数和优化器:

model = SiameseNetwork().to(device)
criterion = ContrastiveLoss()
optimizer = optim.Adam(model.parameters(),lr = 0.001)

(8) 训练模型:

n_epochs = 200
trn_loss_epochs = []
val_loss_epochs = []
trn_acc_epochs = []
val_acc_epochs = []
for epoch in range(n_epochs):
    N = len(trn_dl)
    trn_loss = []
    val_loss = []
    trn_acc = []
    val_acc = []
    for i, data in enumerate(trn_dl):
        loss, acc = train_batch(model, data, optimizer, criterion)
        pos = (epoch + (i+1)/N)
        trn_loss.append(loss)
        trn_acc.append(acc)
    trn_loss_epochs.append(np.average(trn_loss))
    trn_acc_epochs.append(np.average(trn_acc))

    N = len(val_dl)
    for i, data in enumerate(val_dl):
        loss, acc = validate_batch(model, data, criterion)
        pos = (epoch + (i+1)/N)
        val_loss.append(loss)
        val_acc.append(acc)
    val_loss_epochs.append(np.average(val_loss))
    val_acc_epochs.append(np.average(val_acc))
    if epoch==10:
        optimizer = optim.Adam(model.parameters(), lr=0.0005)

绘制训练、验证期间的损失和准确率随时间的变化情况:

epochs = np.arange(n_epochs)+1
plt.subplot(121)
plt.plot(epochs, trn_loss_epochs, 'bo', label='Training loss')
plt.plot(epochs, val_loss_epochs, 'r-', label='validation loss')
plt.title('Variation in training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.grid('off')
plt.legend()
plt.subplot(122)
plt.plot(epochs, trn_acc_epochs, 'bo', label='Training loss')
plt.plot(epochs, val_acc_epochs, 'r-', label='validation loss')
plt.title('Variation in training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Acc')
plt.grid('off')
plt.legend()
plt.show()

训练过程监测

(9) 在新图像上测试模型,模型未见过这些新图像。在测试时,随机获取一张测试图像,并将其与测试数据中的其他图像进行比较:

from torchvision.utils import make_grid
model.eval()
val_dl = DataLoader(val_ds,num_workers=6,batch_size=1,shuffle=True)
dataiter = iter(val_dl)
x0, _, _ = next(dataiter)

for i in range(2):
    _, x1, label2 = next(dataiter)
    concatenated = torch.cat((x0*0.5+0.5, x1*0.5+0.5),0)# torch.unsqueeze(torch.cat((x0*0.5+0.5, x1*0.5+0.5),0), dim=0)
    output1,output2 = model(x0.cuda(),x1.cuda())
    euclidean_distance = F.pairwise_distance(output1, output2)
    output = 'Same Face' if euclidean_distance.item() < 0.6 else 'Different'
    plt.subplot(121)
    plt.imshow((x0*0.5+0.5).squeeze(0).permute(1,2,0).numpy(), cmap='gray')
    plt.subplot(122)
    plt.imshow((x1*0.5+0.5).squeeze(0).permute(1,2,0).numpy(), cmap='gray')
    plt.suptitle('Dissimilarity: {:.2f}\n{}'.format(euclidean_distance.item(), output))
    plt.show()

预测结果
预测结果

从上图中可以看出,即使每一类别只有少数几张图像,也可以识别图像中的人物。为了提高模型性能,训练模型或测试模型前可以从完整图像中裁剪人物面部图像。
了解了孪生网络的原理后,继续学习其他基于指标的网络模型,包括原型和关系网络。

3. 原型网络

原型网络 (Prototypical Networks) 是一种元学习算法,旨在解决在小样本场景下进行分类的问题。该算法的核心思想是将图像表示为嵌入空间中的点,并计算每个类别的“原型”作为该类别所有图像的平均嵌入。在测试时,将测试图像的嵌入与每个类别的原型进行比较,并选择最接近的原型所对应的类别作为预测结果。原型网络已经在许多小样本分类任务上取得了很好的效果。
可以将原型理解为类别中的代表。假如,有 5 种类别,且每个类别包含 10 张图像。原型网络通过计算属于同一类别的每张图像嵌入的平均值,为每个类别提供一个代表性的嵌入(原型)。
考虑以下实际场景:假设数据集中有 5 个不同类别的图像,其中每个类别包含 10 张图像。此外,在训练中为每个类别提供 5 张图像,并在其他 5 张图像上测试网络的准确率。使用每个类别的一张图像和随机选择的测试图像作为查询来构建网络,我们的任务是识别与查询图像(测试图像)具有最高相似性的已知图像(训练图像)。
对于人脸识别任务而言,原型网络的工作原理如下:

  • 随机选择 N 个不同的人物进行训练
  • 选择与每个人物对应的 k 个样本作为用于训练的数据点,即支持集
  • 选择每个人物对应的 q 个样本作为要测试的数据点,即查询集

原型网络

  • 选择 Nc 个类别,支持集中有 N s 张图像,查询集中有 N q 张图像:
  • 通过卷积神经网络 (Convolutional Neural Networks, CNN)网络时,获取支持集(训练图像)和查询集(测试图像)中每个数据点的嵌入向量,CNN 可以确定训练图像中与测试图像最相似的图像索引,将训练图像集合视为支持集 (support set),测试图像集合视为查询集 (query set)。通过获取每个数据点的嵌入向量,可以计算它们之间的相似度得分
  • 训练网络后,计算与支持集(训练图像)嵌入向量对应的原型:
    • 原型是属于同一类别的所有图像的平均嵌入向量:

原型
在以上示例图像中,有三个类别,每个圆圈代表属于该类别的图像嵌入向量。每个星形(原型)是同一类别的所有图像(圆圈)的平均嵌入向量:

  • 计算查询嵌入向量和原型嵌入向量之间的欧几里得距离:
    • 如果有 5 个查询图像和 10 个类别,将得到 50 个欧几里得距离
    • 在以上所获得的欧几里德距离之上执行 softmax,以识别对应于不同支持集类别的概率
    • 训练模型,以最小化将查询图像分配给正确类别的损失值。此外,在遍历数据集时,每次迭代时随机选择一组新的人物(即数据集中的子集)

在迭代结束时,模型将根据支持集图像和查询图像,学习识别查询图像所属的类别。

3. 关系网络

关系网络 (relation network) 算法的核心思想是通过学习如何计算不同图像之间的相似度来实现快速分类。该算法从一对图像中提取特征,并将这些特征输入到一个神经网络中,该网络可以计算两个图像之间的关系得分。在测试时,将测试图像与训练集中所有图像计算关系得分,并使用这些得分进行分类。
关系网络与孪生网络非常相似,但关系网络所优化的指标不是嵌入向量之间的 L1 距离,而是关系分数,关系网络的工作原理如下图所示:

关系网络
在上图中,左边的图像是五个类别的支持集,底部的小狗图片是查询图像:

  • 通过嵌入模块 (embedding module) 传递支持和查询图像,该模块用于获取输入图像的嵌入向量
  • 将支持图像的特征图与查询图像的特征图连接起来
  • 通过 CNN 模块传递连接的特征以预测关系分数
  • 具有最高关系分数的类别是查询图像的预测类别

根据关系网络原理,将查询图像与支持集中的图像进行比较,以确定具有最高相似度的对象类别,从而为查询图像确定所属的类别。

小结

少样本学习在许多领域都具有重要的应用价值。例如,在计算机视觉领域,少样本学习可以用于人脸识别、目标检测和图像分类等任务;在自然语言处理领域,少样本学习可以用于文本分类、命名实体识别和机器翻译等任务。本节中,我们了解了孪生网络,通过学习了两个图像之间的距离函数来识别相似人物的图像;最后,我们了解了原型网络和关系网络,以及如何将它们用于执行小样本图像分类。

系列链接

PyTorch深度学习实战(1)——神经网络与模型训练过程详解
PyTorch深度学习实战(2)——PyTorch基础
PyTorch深度学习实战(3)——使用PyTorch构建神经网络
PyTorch深度学习实战(4)——常用激活函数和损失函数详解
PyTorch深度学习实战(5)——计算机视觉基础
PyTorch深度学习实战(6)——神经网络性能优化技术
PyTorch深度学习实战(7)——批大小对神经网络训练的影响
PyTorch深度学习实战(8)——批归一化
PyTorch深度学习实战(9)——学习率优化
PyTorch深度学习实战(10)——过拟合及其解决方法
PyTorch深度学习实战(11)——卷积神经网络
PyTorch深度学习实战(12)——数据增强
PyTorch深度学习实战(13)——可视化神经网络中间层输出
PyTorch深度学习实战(14)——类激活图
PyTorch深度学习实战(15)——迁移学习
PyTorch深度学习实战(16)——面部关键点检测
PyTorch深度学习实战(17)——多任务学习
PyTorch深度学习实战(18)——目标检测基础
PyTorch深度学习实战(19)——从零开始实现R-CNN目标检测
PyTorch深度学习实战(20)——从零开始实现Fast R-CNN目标检测
PyTorch深度学习实战(21)——从零开始实现Faster R-CNN目标检测
PyTorch深度学习实战(22)——从零开始实现YOLO目标检测
PyTorch深度学习实战(23)——从零开始实现SSD目标检测
PyTorch深度学习实战(24)——使用U-Net架构进行图像分割
PyTorch深度学习实战(25)——从零开始实现Mask R-CNN实例分割
PyTorch深度学习实战(26)——多对象实例分割
PyTorch深度学习实战(27)——自编码器(Autoencoder)
PyTorch深度学习实战(28)——卷积自编码器(Convolutional Autoencoder)
PyTorch深度学习实战(29)——变分自编码器(Variational Autoencoder, VAE)
PyTorch深度学习实战(30)——对抗攻击(Adversarial Attack)
PyTorch深度学习实战(31)——神经风格迁移
PyTorch深度学习实战(32)——Deepfakes
PyTorch深度学习实战(33)——生成对抗网络(Generative Adversarial Network, GAN)
PyTorch深度学习实战(34)——DCGAN详解与实现
PyTorch深度学习实战(35)——条件生成对抗网络(Conditional Generative Adversarial Network, CGAN)
PyTorch深度学习实战(36)——Pix2Pix详解与实现
PyTorch深度学习实战(37)——CycleGAN详解与实现
PyTorch深度学习实战(38)——StyleGAN详解与实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/465678.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

常见的十大网络安全攻击类型

常见的十大网络安全攻击类型 网络攻击是一种针对我们日常使用的计算机或信息系统的行为&#xff0c;其目的是篡改、破坏我们的数据&#xff0c;甚至直接窃取&#xff0c;或者利用我们的网络进行不法行为。你可能已经注意到&#xff0c;随着我们生活中越来越多的业务进行数字化&…

python知识点总结(三)

python知识点总结三 1、有一个文件file.txt大小约为10G&#xff0c;但是内存只有4G&#xff0c;如果在只修改get_lines 函数而其他代码保持不变的情况下&#xff0c;应该如何实现? 需要考虑的问题都有那些?2、交换2个变量的值3、回调函数4、Python-遍历列表时删除元素的正确做…

3/14/24数据结构、线性表

目录 数据结构 数据结构三要素 逻辑结构 存储结构 数据运算 时间复杂度 空间复杂度 线性表 线性表定义 静态分配 动态分配 线性表插入 线性表删除 十天的时间学完了C语言督学课程&#xff0c;最后终于是可以投入到408的科目学习当中。关于数据结构和算法的学习很多部…

智慧城市物联网建设:提升城市管理效率与居民生活品质

目录 一、智慧城市物联网建设的意义 1、提升城市管理效率 2、改善居民生活品质 3、促进城市可持续发展 二、智慧城市物联网建设面临的挑战 1、技术标准与互操作性问题 2、数据安全与隐私保护问题 3、投资与回报平衡问题 三、智慧城市物联网建设的实施策略 1、制定统一…

【Qt】Qt中的常用属性

需要云服务器等云产品来学习Linux可以移步/-->腾讯云<--/官网&#xff0c;轻量型云服务器低至112元/年&#xff0c;新用户首次下单享超低折扣。 目录 一、QWidget属性一览 二、属性enabled(可用状态) 三、属性geometry(修改位置和尺寸) 1、QRect类型的结构 2、geome…

实用工具推荐----Mocreak Win Office 自动部署(激活+安装)

Mocreak 该工具包含功能 一键快速下载、安装、激活最新版 Microsoft Office 软件。用户可在安装 Word、PPT、Excel 的同时&#xff0c;根据软件提示&#xff0c;自助安装其它组件&#xff0c;包括&#xff1a; Outlook、OneNote、Access、Visio、Project、Publisher、Teams、…

Python图像处理:3.七种图像分割方法

一、常见图像分割方法 (1)传统算法 阈值分割&#xff08;Thresholding&#xff09;&#xff1a;这是最简单也是应用最广泛的一种分割方法&#xff0c;通过选定一个阈值将图像转换为二值图像&#xff0c;从而分割出目标区域。这种方法适用于图像的前景和背景对比明显的情况。 …

PWM驱动舵机

PWM驱动舵机 接线图 程序结构图&#xff1a; pwm.c部分代码 #include "stm32f10x.h" // Device headervoid PWM_Init(void){// 开启时钟&#xff0c;这里TIM2是通用寄存器RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);// GPIO初始化代…

基于JavaWeb+SSM+Vue“鼻护灵”微信小程序系统的设计和实现

基于JavaWebSSMVue“鼻护灵”微信小程序系统的设计和实现 滑到文末获取源码Lun文目录前言主要技术系统设计功能截图 滑到文末获取源码 Lun文目录 摘 要 3 Abstract 1 1 绪 论 1 1.1研究背景 1 工作的效率。 1 1.2 研究意义 1 1.3研究现状 1 1.4本文组织结构 2 2 技术介绍 3 2…

华为配置终端定位基本实验配置

配置终端定位基本示例 组网图形 图1 配置终端定位基本服务示例 组网需求数据准备配置思路配置注意事项操作步骤配置文件 组网需求 如图1所示&#xff0c;某公司网络中&#xff0c;中心AP直接与RU连接。 管理员希望通过RU收集Wi-Fi终端信息&#xff0c;并提供给定位服务器进行定…

面试知识汇总——Redis高可用(主从、哨兵、集群)

我们在项目中使用Redis&#xff0c;肯定不会是单点部署Redis服务的。因为&#xff0c;单点部署一旦宕机&#xff0c;就不可用了。为了实现高可用&#xff0c;通常的做法是&#xff0c;将数据库复制多个副本以部署在不同的服务器上&#xff0c;其中一台挂了也可以继续提供服务。…

asp.net 作业星软件系统

asp.net 作业星软件系统 用户功能:分教师和家长&#xff08;学生) 注册登录:登录部分是用户名密码&#xff0c;以及教师和家长&#xff08;学生&#xff09;的勾选; 注册包括用户名密码确认密码再次确认密码(与上方输入的密码比对&#xff09;身份班级设置找回账号的问题和答案…

【前端】-css的详解

&#x1f496;作者&#xff1a;小树苗渴望变成参天大树&#x1f388; &#x1f389;作者宣言&#xff1a;认真写好每一篇博客&#x1f4a4; &#x1f38a;作者gitee:gitee✨ &#x1f49e;作者专栏&#xff1a;C语言,数据结构初阶,Linux,C 动态规划算法&#x1f384; 如 果 你 …

【WEEK3】 【DAY3】JSON Interaction Handling Part Two【English Version】

2024.3.13 Wednesday Continuing from 【WEEK3】 【DAY2】JSON Interaction Handling Part One 【English Version】 Contents 6.4 Code Optimization6.4.1 Unified Solution for Garbled Text6.4.2 Unified Solution for Returning JSON Strings 6.5 Testing Collection Out…

铸铁钳工工作台是一种专门使用工具,具有哪些特点和功能

铸铁钳工作台是一种专门用于加工和修理铸铁制品的工作台。它通常由坚固的钢铁结构构成&#xff0c;表面通常涂有耐腐蚀的涂层&#xff0c;以提高其使用寿命和耐久性。 铸铁钳工作台通常具有以下主要特点和功能&#xff1a; 高强度和稳定性&#xff1a;由于铸铁是一种坚固耐用的…

ConcurrentMap的相关特点和使用

概述 ConcurrentMap是Java中的一个接口&#xff0c;主要扩展了Map接口&#xff0c;用于在多线程环境中提供线程安全的Map实现&#xff0c;是Java.util.concurrent包中的一部分&#xff0c;提供了一些原子操作&#xff0c;这些操作不需要使用synchronized关键字&#xff0c;从而…

SAP前台处理:销售业务集成<VA03/VL03N/VLPOD/VF03) 01/02

一、背景&#xff1a; 从销售订单创建VA01>发货过账VL01N >POD确认>VF01开票 这个流程涉及的凭证流及各个节点如何查询上游下游凭证&#xff1b; 二、凭证流&#xff1a; 从销售订单查看销售凭证流 VA03 双击交货单&#xff1a;带出交货单对应行项目及分批次项目…

一周学会Django5 Python Web开发-Jinja3模版引擎-模板语法

锋哥原创的Python Web开发 Django5视频教程&#xff1a; 2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~共计37条视频&#xff0c;包括&#xff1a;2024版 Django5 Python we…

Jest:JavaScript的单元测试利器

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

Spring炼气之路(炼气二层)

一、bean的配置 1.1 bean的基础配置 id&#xff1a; bean的id&#xff0c;使用容器可以通过id值获取对应的bean&#xff0c;在一个容器中id值唯一 class&#xff1a; bean的类型&#xff0c;即配置的bean的全路径类名 <bean id"bookDao" class "com.zhang…