Python基础算法解析:支持向量机(SVM)

支持向量机(Support Vector Machine,SVM)是一种用于分类和回归分析的机器学习算法,它通过在特征空间中找到一个最优的超平面来进行分类。本文将详细介绍支持向量机的原理、实现步骤以及如何使用Python进行编程实践。

什么是支持向量机?

支持向量机是一种监督学习算法,它可以用于分类和回归任务。在分类问题中,SVM的目标是找到一个超平面,将不同类别的数据点分开。这个超平面的选择是通过最大化间隔(即两个类别最近的数据点到超平面的距离)来完成的。SVM不仅可以处理线性可分的情况,还可以通过核技巧处理非线性可分的情况。

支持向量机的原理

在二维空间中,一个超平面可以用一个线性方程来表示:

在这里插入图片描述

支持向量机的实现步骤

  • 数据预处理:包括数据清洗、特征选择、特征缩放等。
  • 构建模型:选择合适的核函数(如线性核、多项式核、径向基函数核等)。
  • 训练模型:通过优化算法(如SMO算法)寻找最优的超平面。
  • 预测:根据训练好的模型,对新的数据进行分类预测。

Python实现支持向量机

下面我们通过Python代码来演示如何使用支持向量机进行分类:

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score

# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 构建支持向量机模型
svm_model = SVC(kernel='linear', C=1.0)

# 训练模型
svm_model.fit(X_train, y_train)

# 预测
y_pred = svm_model.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

在上述代码中,我们使用了scikit-learn库中的SVC类来构建支持向量机模型,并使用鸢尾花数据集进行训练和测试。

总结

支持向量机是一种强大且灵活的分类算法,它在许多实际问题中都表现出色。通过本文的介绍,你已经了解了支持向量机的原理、实现步骤以及如何使用Python进行编程实践。希望本文能够帮助你更好地理解和应用支持向量机算法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/465012.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Java刷题篇】串联所有单词的子串

这里写目录标题 📃1.题目📜2.分析题目📜3.算法原理🧠4.思路叙述✍1.进窗口✍2.判断有效个数✍3.维护窗口✍4.出窗口 💥5.完整代码 📃1.题目 力扣链接: 串联所有单词的子串 📜2.分析题目 阅…

2.vscode 配置python开发环境

vscode用着习惯了,也不想再装别的ide 1.安装vscode 这一步默认已完成 2.安装插件 搜索插件安装 3.选择调试器 Ctrl Shift P(或F1),在打开的输入框中输入 Python: Select Interpreter 搜索,选择 Python 解析器 选择自己安…

vulhub中GitLab 远程命令执行漏洞复现(CVE-2021-22205)

GitLab是一款Ruby开发的Git项目管理平台。在11.9以后的GitLab中,因为使用了图片处理工具ExifTool而受到漏洞CVE-2021-22204的影响,攻击者可以通过一个未授权的接口上传一张恶意构造的图片,进而在GitLab服务器上执行任意命令。 环境启动后&am…

深度学习1650ti在win10安装pytorch复盘

深度学习1650ti在win10安装pytorch复盘 前言1. 安装anaconda2. 检查更新显卡驱动3. 根据pytorch选择CUDA版本4. 安装CUDA5. 安装cuDNN6. conda安装pytorch结语 前言 建议有条件的,可以在安装过程中,开启梯子。例如cuDNN安装时登录 or 注册,会…

安卓国产百度网盘与国外云盘软件onedrive对比

我更愿意使用国外软件公司的产品,而不是使用国内百度等制作的流氓软件。使用这些国产软件让我不放心,他们占用我的设备大量空间,在我的设备上推送运行各种无用的垃圾功能。瞒着我,做一些我不知道的事情。 百度网盘安装包大小&…

鸿蒙Next 支持数据双向绑定的组件:Checkbox--Search--TextInput

Checkbox $$语法,$$绑定的变量发生变化时,会触发UI的刷新 Entry Component struct MvvmCase { State isMarry:boolean falseStatesearchText:string build() {Grid(){GridItem(){Column(){Text("checkbox 的双向绑定")Checkbox().select($$…

【PyTorch】基础学习:一文详细介绍 torch.save() 的用法和应用

【PyTorch】基础学习:一文详细介绍 torch.save() 的用法和应用 🌈 个人主页:高斯小哥 🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程&#x1f44…

ioDraw:与 GitHub、gitee、gitlab、OneDrive 无缝对接,绘图文件永不丢失!

🌟 绘图神器 ioDraw 重磅更新,文件保存再无忧!🎉 无需注册,即刻畅绘!✨ ioDraw 让你告别繁琐注册,尽情挥洒灵感! 新增文件在线实时保存功能,支持将绘图文件保存到 GitHu…

【HarmonyOS】ArkUI - 向左/向右滑动删除

核心知识点:List容器 -> ListItem -> swipeAction 先看效果图: 代码实现: // 任务类 class Task {static id: number 1// 任务名称name: string 任务${Task.id}// 任务状态finished: boolean false }// 统一的卡片样式 Styles func…

机电公司管理小程序|基于微信小程序的机电公司管理小程序设计与实现(源码+数据库+文档)

机电公司管理小程序目录 目录 基于微信小程序的机电公司管理小程序设计与实现 一、前言 二、系统设计 三、系统功能设计 1、机电设备管理 2、机电零件管理 3、公告管理 4、公告类型管理 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八…

【LabVIEW FPGA入门】定时

在本节学习使用循环计时器来设置FPGA循环速率,等待来添加事件之间的延迟,以及Tick Count来对FPGA代码进行基准测试。 1.定时快捷VI函数 在FPGA VI中放置的每个VI或函数都需要一定的时间来执行。您可以允许操作以数据流确定的速率发生,而无需额…

FFmpeg分析视频信息输出到指定格式(csv/flat/ini/json/xml)文件中

1.查看ffprobe帮助 输出格式参数说明: 本例将演示输出csv,flat,ini,json,xml格式 输出所使用的参数如下: 1.输出csv格式: ffprobe -i 4K.mp4 -select_streams v -show_frames -of csv -o 4K.csv 输出: 2.输出flat格式: ffprobe -i 4K.mp4 -select_streams v -show_frames …

深度学习pytorch——Tensor维度变换(持续更新)

view()打平函数 需要注意的是打平之后的tensor是需要有物理意义的,根据需要进行打平,并且打平后总体的大小是不发生改变的。 并且一定要谨记打平会导致维度的丢失,造成数据污染,如果想要恢复到原来的数据形式,是需要…

在github下载的神经网络项目,如何运行?

github网页上可获取的信息 在github上面,有一个requirements.txt文件,该文件说明了项目要求的python解释器的模块。 - 此外,还有一个README.md文件,用来说明项目的运行环境以及其他的信息。例如python解释器的版本是3.7、PyTorc…

理财第一课:炒股词典

文章目录 基础代码规则委比委差量比换手率市盈率市净率 散户亏钱的原因庄家分析炒股战法波浪理论其它 钱者,人生之大事,死生存亡之地,不可不察也。耕田之利,十倍;珠玉之赢,百倍;闹革命&#xff…

STM32使用TIM2+DMA产生PWM波形异常分析

1、问题描述 使用 STM32F4 的 TIM2 结合 DMA,产生的 PWM 波形不符合预期,但是相同的配置使用在 IM3 上,得到的 PWM 波形就是符合预期的。其代码和配置都是从 F1 移植过来的,在 F1 上使用 TIM2 是没有问题的,对于 F4 的…

蓝桥杯并查集|路径压缩|合并优化|按秩合并|合根植物(C++)

并查集 并查集是大量的树(单个节点也算是树)经过合并生成一系列家族森林的过程。 可以合并可以查询的集合的一种算法 可以查询哪个元素属于哪个集合 每个集合也就是每棵树都是由根节点确定,也可以理解为每个家族的族长就是根节点。 元素集合…

21 OpenCV 直方图均衡化

文章目录 直方图概念均衡的目的equalizeHist 均衡化算子示例 直方图概念 图像直方图,是指对整个图像像在灰度范围内的像素值(0~255)统计出现频率次数,据此生成的直方图,称为图像直方图-直方图。直方图反映了图像灰度的分布情况。 均衡的目的…

【Java】十大排序

目录 冒泡排序 选择排序 插入排序 希尔排序 归并排序 快速排序 堆排序 计数排序 桶排序 基数排序 冒泡排序 冒泡排序(Bubble Sort)是一种简单的排序算法。它重复地遍历要排序的序列,依次比较两个元素,如果它们的顺序错误就把它们交换过来。遍历…

【LeetCode每日一题】310. 最小高度树

文章目录 [310. 最小高度树](https://leetcode.cn/problems/minimum-height-trees/)思路:拓扑排序代码: 310. 最小高度树 思路:拓扑排序 首先判断节点数量n,如果只有一个节点,则直接返回该节点作为最小高度树的根节点…