Blocks —— 《Objective-C高级编程 iOS与OS X多线程和内存管理》

目录

    • Blocks概要
      • 什么是Blocks
      • OC转C++方法
      • 关于几种变量的特点
    • Blocks模式
      • Block语法
      • Block类型 变量
      • 截获局部变量值
      • __block说明符
      • 截获的局部变量
    • Blocks的实现
      • Block的实质


Blocks概要

什么是Blocks

Blocks是C语言的扩充功能,即带有局部变量的匿名函数。

顾名思义,不带有名称的函数,C语言的标准可不允许存在这样的函数。就算是使用函数指针调用函数也需要知道函数名称。

OC转C++方法

因为需要看Block操作的C++源码,所以要知道转换的方法:

打开终端,cd到OC源文件.m所在的文件夹,输入clang -rewrite-objc 文件名称.m,就会在当前文件夹内自动生成对应的.cpp文件.

关于几种变量的特点

C语言函数中可能使用的变量:

  • 函数参数
  • 自动变量(局部变量)
  • 静态变量(静态局部变量)
  • 静态全局变量
  • 全局变量

而且,由于存储区域特殊,这其中有三种变量是可以在任何时候以任何状态调用的(在函数的多次调用之间能够传递值的变量):

  • 静态变量
  • 静态局部变量
  • 全局变量

虽然这些变量的作用域不同,但在整个程序中,一个变量总保持在一个内存区域。而其他两种虽然有各自相应的作用域,超过作用域后,会被销毁。

Blocks模式

Block语法

完整形式的Block语法与一般的C语言函数定义相比,仅有两点不同:

  1. 没有函数名,即匿名函数;
  2. 带有^,因为iOS、Mac OS应用程序的源代码中将大量使用Block,所以插入该记号便于查找。

Block语法的BN范式:^ 返回值类型 参数列表 表达式。例如:

^int (int value, int count) {return count * value;}

可省略返回值类型

^(int value, int count) {return count * value;}

省略返回值类型的情况下:

  • 表达式中return的类型就是返回类型;
  • 表达式中无return语句说明是void类型;
  • 表达式中含有多个return语句时,所有return的返回值类型必须相同。

可省略参数列表,如果不使用参数:

^void (void) {printf("Blocks\n");}
//省略形式
^{printf("Blocks\n");}

Block类型 变量

定义C语言函数时,可以将所定义的函数的地址赋值给函数指针类型的变量:

int func(int count) {
    return count + 1;
}
int (*funcptr) (int) = &func;

同样的,Block是一种数据类型,可将Block语法赋值给声明为Block类型的变量:

//声明Block类型变量仅仅是将声明函数指针类型变量的*变为^
int (^blockName) (int);

//赋值(Block内容的实现)
int (^blockName) (int) = ^(int count) {
    return count + 1;
};

如果我们在项目中经常使用某种相同类型的block,可以用typedef抽象出这种类型的Block:

typedef int (^AddOneBlock) (int count);
AddOneBlock blockName = ^(int count) {return count + 1;};

typedef给Block起别名,使得block的赋值和传递变得相对方便,因为block一经抽象出来了:

typedef int (^block_t) (int);

//block作为参数
void func(int (^blockName) (int));
//简化后
void func(block_t blockName);

//block作为返回值
int (^func() (int)) {
    return ^(int count) {return count + 1;};
}
//简化后
block_t func() { ... }

Block类型变量可完全像通常的C语言变量一样使用,因此也可以使用指向Block类型变量的指针,即Block指针类型变量:

typedef int (^block_t) (int);
block_t blockName = ^(int count) {return count + 1;};
block_t* blockptr = &blockName;

//int result = blockName(10);
int result = (*blockptr)(10);

截获局部变量值

int a = 20;
int b = 10;
    
void (^blockName)(void) = ^{
    printf("%d, %d\n", a, b);
};

blockName();
    
a++;
b++;
    
printf("%d, %d\n", a, b);  //21, 11
blockName();  //20, 10

可以看到,使用Block时,还可以使用Block外部的局部变量。而一旦在Block内部使用了其外部变量,这些变量就会被Block保存(即被截获),从而在执行块时使用。

__block说明符

实际上,局部变量值截获只能保存执行Block语法瞬间的值,保存后就不能改写改值:

请添加图片描述

可以看到,当修改截获的局部变量值时,会产生编译错误。

若想实现在Block内部将值赋给外部的局部变量,需要在该局部变量上附加__block说明符:

__block int a = 20;
void (^blockName)(void) = ^{
    a = 27;
    printf("%d\n", a);
};
blockName();  //27
a++;
printf("%d\n", a);  //28
blockName();  //27

小结

  • 修改Block外部的局部变量,Block内部被截获的局部变量不受影响;
  • 修改Block内部的局部变量,编译不通过;
  • 附有 __block说明符的局部变量可在Block中赋值,该变量也称__block变量。

截获的局部变量

截获变量为OC对象

从前面一部分可以得知,将值赋给Block中截获的局部变量会产生编译错误。
那么截获OC对象,调用变更该对象的方法也会产生编译错误吗?

id array = [[NSMutableArray alloc] init];
        
void (^blockName) (void) = ^{
    id object = [[NSObject alloc] init];
    [array addObject: object];
};
        
blockName();

截获的变量值array为NSMutableArray类的对象,用C语言描述,即是截获NSMutableArray类对象用的结构体实例指针

使用截获的值,这是没有问题的,而向截获的变量array赋值则会产生编译错误:

请添加图片描述

这种情况下,需要给截获的局部变量附加__block说明符:

__block id array = [[NSMutableArray alloc] init];

截获对象为C语言数组

请添加图片描述
看似没有任何问题,只是使用了C语言的字符串字面量数组,而并没有截获的局部变量赋值。但由于在目前的Blocks中,截获自动变量的方法并没有实现对C语言数组的截获,所以无法通过编译。

使用指针就可以解决该问题:

const char* text = "hello";
    
void (^blockName) (void) = ^{
    printf("%c\n", text[2]);
};
    
blockName();  //l

Blocks的实现

Block的实质

Block语法实际上是作为极普通的C语言源代码来处理的。
通过支持Block的编译器,含有Block语法的源代码转换为一般C语言编译器能够处理的源代码,并作为极为普通的C语言源代码被编译。

Block其实就是Objective-C对象,因为它的结构体中含有isa指针。
下面在终端通过clang将OC中Block语法转换为C++代码:clang -rewrite-objc main.m请添加图片描述

main.m

int main(void) {
    void (^blockName) (void) = ^{
        printf("Block\n");
    };
    blockName();
    return 0;
}

main.cpp
请添加图片描述

下面,我们将源代码分成几个部分逐步理解:

  1. 源代码中的Block语法

    //void (^blockName) (void) = ^{printf("Block\n");};
    //通过Blocks使用的匿名函数被作为简单的C语言函数来处理
    static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
         printf("Block\n");
     }
    

    根据Block所属的函数名(此处为main)和该Block语法在该函数出现的顺序值(此处为0)来给经clang变换的函数命名。
    该函数的参数_cself相当于C++实例方法中指向实例自身的变量this,或是OC实例方法中指向对象自身的变量self,即参数__cself为指向。

    C++的this,Objective-C的self
    定义类的实例方法:

    //C++
    void MyClass::method(int arg) {printf("%p %d", this, arg);}
    MyClass cls;
    cls.method(10);
    //OC
    - (void)method: (int)arg {printf("%p %d", self, arg);}
    MyObject* obj = [[MyObject alloc] init];
    [obj method: 10];
    

    C++、Objective-C编译器将该方法作为C语言函数来处理:

    //C++转成C
    void __ZN7MyClass6methodEi(MyClass* this, int arg) {
        printf("%p %d", this, arg);
    }
    struct MyClass cls;
    __ZN7MyClass6methodEi(&cls, 10);
    //OC转成C
    void _I_MyObject_method_(struct MyObject* self, SEL _cmd, int arg) {
        printf("%p %d", self, arg);
    }
    MyObject* obj = objc_msgSend(objc_getClass("MyObject"), sel_registerName("alloc"));
    obj = objc_msgSend(obj, sel_registerName("init"));
    objc_Send(obj, sel_registerName("method:"), 10);
    

    objc_msgSend函数根据指定的对象和函数名,从对象持有类的结构体中检索_I_MyObject_method_函数的指针并调用。
    objc_msgSend函数的第一个参数objc作为_I_MyObject_method_的第一个参数self进行传递。

  2. 来看看参数的声明:struct __main_block_impl_0* __cself,该结构体的声明如下:

    struct __main_block_impl {
        void* isa;
        int Flags;  //标志
        int Reserved;  //今后版本升级所需的区域
        void* FuncPtr;  //指针函数
    }
    struct __main_block_impl_desc_0 {
        unsigned long reserved;  //今后版本升级所需的区域
        unsigned long Block_size;  //Block大小
    }
    
    struct __main_block_impl_0 {
        struct __block_impl impl;
        struct __main_block_desc_0* Desc;
        
        //构造函数
       __main_block_impl_0(void* fp, struct __main_block_desc_0* desc, int flags=0) {
           impl.isa = &_NSConcreteStackBlock;
           impl.Flags = flags;
           impl.FuncPtr = fp;
           Desc = desc;
       }
    }
    

    来看看构造函数的调用,因为转换较多,看起来比较复杂,以下去掉转换的部分:

    //void (*blockName) (void) = (void (*) void)&__main_block_impl_0 ((void *)__main_block_func_0, &__main_block_desc_0_DATA);
    struct __main_block_impl_0 tmp = __main_block_impl_0(__main_block_func_0, &__main_block_desc_0_DATA);
    struct __main_block_impl_0* blockName = &tmp;
    

    该源代码将__main_block_impl_0结构体类型的局部变量,即栈上生成的__main_block_impl_0结构体实例的指针赋值给__main_block_impl_0结构体指针类型的变量blockName

    这部分代码对应的最初源代码:void (^blockName) (void) = ^{printf("Block\n");};将Block语法生成的Block赋给Block类型变量blockName,它等同于将__main_block_impl_0结构体实例的指针赋给变量blockName。

    构造函数是C++中一种特殊的成员函数,用于在创建结构体对象时对其进行初始化操作,避免对象处于未定义状态。构造函数名称必须和类(包括结构体)的名称完全相同,无返回类型(包括void),若构造函数名称和结构体名不一致,编译器将不认为这是一个有效的构造函数,而是一个普通的成员函数。

  3. 下面来分析一下该构造函数__main_block_impl_0(__main_block_func_0, &__main_block_desc_0_DATA)中的参数
    第一个参数是由Block语法转换的C语言函数指针。第二个参数是作为静态全局变量初始化的__main_block_desc_0结构体实例指针:

    static struct __main_block_desc_0 __main_block_desc_0_DATA = {
        0,
        sizeof(struct __main_block_impl_0)  //Block大小
    };
    
  4. 接下来来看看调用Block的部分:blockName();
    这部分源代码:

    ((void (*)(__block_impl *))((__block_impl *)blockName)->FuncPtr)((__block_impl *)blockName);
    

    去掉转换部分:

    (*blockName->impl.FuncPtr)(blockName);
    

    可以看出这是简单的函数指针调用函数。

  5. 最后探究一下上面没有提到的_NSConcreteStackBlock

    isa = &_NSConcreteStackBlock;
    

    首先要理解OC类和对象的实质,所谓Block就是Objective-C对象。
    “id”这一变量类型用于存储OC对象,在usr/include/objc/runtime.h中是如下进行声明的:

    typedef struct objc_object {
        Class isa;
    }* id;
    
    typedef struct objc_class {
        Class isa;
    }* Class;
    

    这两种结构体归根结底是在各个对象和类的实现中使用的最基本的结构体。
    下面通过编写OC类来确认一下:

    @interface MyObject : NSObject {
        int val0;
        int val1;
    }
    
    //基于objc_object结构体,该类的对象的结构体如下:
    struct MyObject {
        Class isa;
        int val0;
        int val1;
    }
    

    MyObject类的实例变量val0和val1被直接声明为对象的结构体成员。生成的各个对象,即由该类生成的对象的各个结构体实例,通过成员变量isa保持该类的结构体实例指针。

    请添加图片描述

    各类的结构体就是基于objc_class结构体的class_t结构体。class_t结构体在objc4运行时库的runtime/objc-runtime-new.h中声明如下:

    struct class_t {
        struct class_t* isa;
        struct class_t* superclass;
        Cache cache;
        IMP* vtable;
        unitptr_t data_NEVER_USE;
    };
    

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/464953.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何在WSL中的ubuntu编译Linux内核并且安装使用ebpf?

如何在WSL中的ubuntu编译Linux内核并且安装使用ebpf? 步骤1 编译安装内核获取源码修改配置编译编译成功后配置重启WSL测试 步骤2 安装bcc安装依赖下载bcc,编译测试 环境: wsl2windows 11 步骤1 编译安装内核 去https://kernel.org/找你想要的版本, …

CCDP.01.使用NotePad++辅助部署OpenStack的说明

前言 对于象OpenStack(OS)这样的复杂分布式系统(云计算平台),一次部署通过是需要相当的Linux基础、网络基础、分布式系统基础、云计算基础的。这里类比在开发大型复杂系统常常采用的“防御式编程”方法论,探…

Gin 框架中实现路由的几种方式介绍

本文将为您详细讲解 Gin 框架中实现路由的几种方式,并给出相应的简单例子。Gin 是一个高性能的 Web 框架,用于构建后端服务。在 Web 应用程序中,路由是一种将客户端请求映射到特定处理程序的方法。以下是几种常见的路由实现方式: …

llama笔记:官方示例解析 example_chat_completion.py

1 导入库 from typing import List, Optional从typing模块中导入List和Optional。typing模块用于提供类型注解的支持,以帮助明确函数预期接收和返回的数据类型。List用于指定列表类型Optional用于指定一个变量可能是某个类型,也可能是None。 import fir…

Laravel11.0.3安装完后运行项目报错

Laravel11.0.3安装完后运行项目报错:could not find driver (Connection: sqlite, SQL: PRAGMA foreign_keys ON;) 运行项目报错时提示链接sqlite错误 解决方案: 1.确认机器安装了sqlite,https://blog.csdn.net/centaury32/article/detail…

C#,人工智能,机器学习,聚类算法,训练数据集生成算法、软件与源代码

摘要:本文简述了人工智能的重要分支——机器学习的核心算法之一——聚类算法,并用C#实现了一套完全交互式的、可由用户自由发挥的,适用于聚类算法的训练数据集生成软件——Clustering。用户使用鼠标左键(拖动)即可生成任意形状,任意维度,任意簇数及各种数据范围的训练数…

尚硅谷SQL|数据库的创建,修改与删除

DDL:创建和管理表 DDL所有的操作都要慎重,尤其是删除,清空等。 创建数据库--->确认字段--->创建数据表---->插入数据 创建数据库 1.创建数据库:推荐使用方式3 #创建数据库 #方式1,使用的是默认字符集 create databa…

Matlab|【免费】基于半不变量的概率潮流计算

目录 主要内容 部分代码 结果一览 下载链接 主要内容 该程序主要内容是基于半不变量法的概率潮流,包含蒙特卡洛模拟法、半不变量法+Gram-Charlier级数展开以及半不变量法Cornish-Fisher级数展开三种方法以及效果对比,模型考虑了…

Android学习使用GitLab(保姆级)

实习生入职第一课 学习使用GitLab,熟悉Git版本控制工具 下面是我的学习笔记,希望能帮助到需要的人! 目录 一、注册你的GitLab账号 二、安装Git 三、在Android studio中配置Git 四、GitLab账户配置SSH Keys 五、GitLab账号创建项目 六…

Qt/C++监控推流设备推流/延迟极低/实时性极高/rtsp/rtmp推流/hls/flv/webrtc拉流/调整分辨率降低带宽

一、前言 算下来这个推流的项目作品写了有四年多了,最初第一个版本只有文件点播的功能,用的纯QTcpSocket通信实现,属于比较简单的功能。由于文件点播只支持文件形式的推流,不支持网络流或者本地设备采集,所以迫切需要…

【GPT-SOVITS-05】SOVITS 模块-残差量化解析

说明:该系列文章从本人知乎账号迁入,主要原因是知乎图片附件过于模糊。 知乎专栏地址: 语音生成专栏 系列文章地址: 【GPT-SOVITS-01】源码梳理 【GPT-SOVITS-02】GPT模块解析 【GPT-SOVITS-03】SOVITS 模块-生成模型解析 【G…

ChatGPT提示词方法的原理

关于提示词,我之前的一些文章可以参考: 【AIGC】AI作图最全提示词prompt集合(收藏级)https://giszz.blog.csdn.net/article/details/134815245?ydrefereraHR0cHM6Ly9tcC5jc2RuLm5ldC9tcF9ibG9nL21hbmFnZS9hcnRpY2xlP3NwbT0xMDExL…

如何在Mac中删除照片?这里有详细步骤

前言 本文介绍如何从Mac中删除照片,以释放硬盘空间或更好地组织文件和文件夹。 如何使用废纸篓删除Mac上的图片 在Mac上删除图片的最简单方法之一是使用废纸篓功能。学习只需几秒钟。下面是如何删除单个图片以及如何在Mac上删除多个图片,以及一些关键和有用的提示,以使该…

Matlab|考虑可再生能源消纳的电热综合能源系统日前经济调度模型

目录 1 主要内容 模型示意图 目标函数 程序亮点 2 部分程序 3 程序结果 4 下载链接 1 主要内容 本程序参考文献《考虑可再生能源消纳的建筑综合能源系统日前经济调度模型》模型,建立了电热综合能源系统优化调度模型,包括燃气轮机、燃气锅炉、余热…

195基于matlab的凸轮机构GUI界面

基于matlab的凸轮机构GUI界面 , 凸轮设计与仿真 绘制不同的凸轮轮廓曲线 ,凸轮机构运动参数包括推程运动角,回程运动角,远休止角,近休止角。运动方式,运动规律。运动仿真过程可视化。内容齐全详尽。用GUI打…

Docker 哲学 - 容器操作 -cp

1、拷贝 容器绑定的 volume的 数据,到指定目录 2、匿名挂载 volume 只定义一个数据咋在容器内的path,docker自动生成一个 sha256 的key作为 volume 名字。这个 sha256 跟 commitID 一致都是唯一的所以 ,docker利用这个机制,可以…

【C++ 08】vector 顺序表的常见基本操作

文章目录 前言🌈 Ⅰ vector 类对象的定义1. 定义格式2. vector 对象的构造 🌈 Ⅱ vector 类对象的容量🌈 Ⅲ vector 类对象的访问🌈 Ⅳ vector 类对象的修改🌈 Ⅴ vector 定义二维数组 前言 vector 介绍 vector 是一…

julia语言中的决策树

决策树(Decision Tree)是一种基本的分类与回归方法,它呈现出一种树形结构,可以直观地展示决策的过程和结果。在决策树中,每个内部节点表示一个属性上的判断条件,每个分支代表一个可能的属性值,每…

使用IDEA进行Scala编程相关安装步骤

一、相关安装包(jdk最好用1.8版本,其他不做要求) IDEA安装包 jdk-8u101-windows-x64.exe scala-2.12.19 二、安装顺序 在安装IDEA之前,首先要安装好java和scala环境,以便后续配置 三、jdk和scala安装要求 1.jdk安…

【论文阅读】DiffSpeaker: Speech-Driven 3D Facial Animation with Diffusion Transformer

DiffSpeaker: 使用扩散Transformer进行语音驱动的3D面部动画 code:GitHub - theEricMa/DiffSpeaker: This is the official repository for DiffSpeaker: Speech-Driven 3D Facial Animation with Diffusion Transformer paper:https://arxiv.org/pdf/…