时序分解 | Matlab实现GWO-CEEMDAN基于灰狼算法优化CEEMDAN时间序列信号分解

时序分解 | Matlab实现GWO-CEEMDAN基于灰狼算法优化CEEMDAN时间序列信号分解

目录

    • 时序分解 | Matlab实现GWO-CEEMDAN基于灰狼算法优化CEEMDAN时间序列信号分解
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.CEEMDAN方法的分解效果取决于白噪声幅值权重(Nstd)和噪声添加次数(NE),因此,采用智能优化算法对这2个参数进行优化,适应度函数包括包络熵、样本熵、信息熵、排列熵,可随时切换(Matlab完整源码和数据)
2.直接替换Excel数据即可用,注释清晰,适合新手小白
3.附赠时间序列测试数据,可直接运行main一键出图

程序设计

  • 完整源码和数据获取方式私信博主回复:Matlab实现GWO-CEEMDAN基于灰狼算法优化CEEMDAN时间序列信号分解
%% 以最小包络熵、最小样本熵、最小信息熵、最小排列熵为目标函数(任选其一),采用优化CEEMDAN,求取CEEMDAN最佳的两个参数
clear
clc
close all
xz = 1;  %xz=1 or 2, 选择1,以最小包络熵为适应度函数,选择2,以最小样本熵为适应度函数,选择3,以最小信息熵为适应度函数,选择4,以最小排列熵为适应度函数
if xz == 1  
    fobj=@EnvelopeEntropyCost;          %最小包络熵
elseif xz == 2
    fobj=@SampleEntropyCost;            %最小样本熵
elseif xz == 3
    fobj=@infoEntropyCost;              %最小信息熵
elseif xz == 4
    fobj=@PermutationEntropyCost;       %最小排列熵
end

%% 选取数据
da = xlsread('测试数据.xlsx','B:B'); %这里选取测试数据,B代表Excel中的第B列,注意这里替换为自己的数据即可,数据形式为n行*1列,列数必须为1plot(da);
title('原始信号')
set(gcf,'color','w')

%% 设置参数
lb = [0.15 50];           % 噪声幅值权重的优化范围设置为[0.15,0.6],噪声添加次数的优化范围为[50,600]
ub = [0.6 600];  
dim = 2;                  % 优化变量数目
Max_iter=20;              % 最大迭代数目
SearchAgents_no=10;       % 种群规模

%% 调用NGO函数
disp('代码运行时间较长,请耐心等待!')
[fMin , bestX, Convergence_curve ] = GWO(SearchAgents_no,Max_iter,lb,ub,dim,fobj,da);

%% 画适应度函数曲线图,并输出最佳参数
figure
plot(Convergence_curve,'linewidth',1);
title('迭代曲线图')
xlabel('迭代次数');
ylabel('适应度值');
legend('GWO优化CEEMDAN')
set(gcf,'color','w')
display(['GWO最佳位置为: ', num2str(bestX)]);  %输出最佳位置
display(['GWO最佳适应度值为 : ', num2str(fMin)]);  %输出最佳适应度值

%% CEEMDAN分解图
X = da;
Nstd = bestX(1);
NR = fix(bestX(2));
MaxIter = 10;
[anmodes,its]=ceemdan(X,Nstd,NR,MaxIter);
plotimf(anmodes,size(anmodes,1),'r',' CEEMDAN分解结果'); %画图
xlswrite('GWO-CEEMDAN分解结果.xlsx',anmodes);

%% 频谱图
fs=1;
N=400;
u=anmodes;
figure('Name','频谱图','Color',[1 1 1])
for i=1:size(u,1) 
    subplot(size(u,1) ,1,i)
    [cc,y_f]=plot_fft(u(i,:),fs,1);
    plot(y_f,cc,'b','LineWIdth',1);
    ylabel(['IMF',num2str(i)]);
end


参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718## 标题

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/464862.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【tls招新web部分题解】

emowebshell (php7.4.21版本漏洞) 非预期 题目提示webshell,就直接尝试一下常见的后门命名的规则 如 shell.php这里运气比较好,可以直接shell.php就出来 要是不想这样尝试的话,也可以直接dirsearch进行目录爆破 然后在phpinfo中直接搜素c…

【Leetcode-73.矩阵置零】

题目: 给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 示例 1: 输入:matrix [[1,1,1],[1,0,1],[1,1,1]] 输出:[[1,0,1],[0,0,0],[1,0,1]]示例 2&…

Redis学习笔记(基础篇)

Redis基础 1 Redis是什么?1.1 键值型1.2 NoSQL1.2.1 NoSQL与SQL的区别是什么1.2.2 总结 1.3 Redis的特点是什么? 2 Redis怎么用?2.1 Redis的基本命令2.2 Key的层级结构2.3 Redis的基本数据类型有哪些?2.1.1 String类型2.1.2 Hash类…

JavaWeb:vue、AJax、ELement、maven、SpringBoot、、Http、Tomcat、请求响应、分层解耦

1 Vue 1.1 Vue介绍 VUE是前端框架&#xff0c;基于MVVM&#xff0c;实现数据双向绑定 框架是半基础软件&#xff0c;可重用的代码模型 1.2 Vue指令 <script src"js/vue.js"></script></head> <body><div id"id"><!--…

【鸿蒙HarmonyOS开发笔记】常用组件介绍篇 —— 弹窗组件

简介 弹窗是移动应用中常见的一种用户界面元素&#xff0c;常用于显示一些重要的信息、提示用户进行操作或收集用户输入。ArkTS提供了多种内置的弹窗供开发者使用&#xff0c;除此之外还支持自定义弹窗&#xff0c;来满足各种不同的需求。 下面是所有涉及到的弹窗组件官方文档…

边缘计算+WEB端应用融合:AI行为识别智能监控系统搭建指南 -- 云端系统数据库设计(五)

专栏目录 边缘计算WEB端应用融合&#xff1a;AI行为识别智能监控系统搭建指南 – 整体介绍&#xff08;一&#xff09; 边缘计算WEB端应用融合&#xff1a;AI行为识别智能监控系统搭建指南 – 边缘设备图像识别及部署&#xff08;二&#xff09; 边缘计算WEB端应用融合&#xf…

研究生总结

Note:本博客更多是关于自己的感悟&#xff0c;没有翻阅文件详细查证&#xff0c;如果存在错过&#xff0c;也请提出指正。 1. 半监督回归 相比于半监督分类&#xff0c;半监督回归相对冷门。回归和分类之间有着难以逾越的天谴&#xff0c;预测精度。分类中的类别是可数的&…

网络学习:ICMPV6报文

目录 前言&#xff1a; 一、ICMPV6的报文内容 二、ICMPv6差错报文分类 1、目的不可达错误报文&#xff08;type1) 2、数据包过大错误报文(type2) 3、超时报文(type3) 4、参数错误报文 三、ICMPv6信息报文的分类 1、回送请求报文&#xff1a; 2、回送应答报文&#xf…

IDEA系列软件设置自动换行

以pycharm软件为例&#xff0c;我们在编程的时候常常会遇到这种情况&#xff0c;内容过长导致超出pycharm的界面&#xff0c;导致我们阅读浏览起来非常的不方便&#xff0c;对于这种情况&#xff0c;我们可以通过给IDEA软件设置自动换行来解决 首先打开setting&#xff0c;找到…

ElasticSearch:数据的魔法世界

​ 欢迎来到ElasticSearch的奇妙之旅&#xff01;在这个充满魔法的搜索引擎世界中&#xff0c;数据不再是沉闷的数字和字母&#xff0c;而是变得充满活力和灵动。无论你是刚刚踏入数据探索的小白&#xff0c;还是已经对搜索引擎有所了解的行者&#xff0c;本篇博客都将为你揭示…

ThingsBoard Edge 设备控制

文章目录 一、RPC 功能1.服务端 RPC2.客户端 RPC3.MQTT RPC API3.1.服务端RPC3.2.客户端RPC 二、设备控制1.环境准备2.创建设备3.服务端PRC3.1.RPC消息主题3.2.程序源码3.3.创建仪表板3.4.边缘分配仪表板3.5.测试 4.客户端RPC4.1.RPC消息主题4.2.程序源码4.3.规则链4.4.测试 Th…

十四、GPT

在GPT-1之前&#xff0c;传统的 NLP 模型往往使用大量的数据对有监督的模型进行任务相关的模型训练&#xff0c;但是这种有监督学习的任务存在两个缺点&#xff1a;预训练语言模型之GPT 需要大量的标注数据&#xff0c;高质量的标注数据往往很难获得&#xff0c;因为在很多任务…

Qt for Mac阻止MacOS系统休眠

Qt开发的应用程序如果电脑休眠了会影响软件的使用&#xff0c;因此在软件的使用过程中需要防止电脑休眠&#xff0c;在Win上有专门的API进行处理&#xff0c;在Mac上也必需使用Mac平台自身的API&#xff0c;本篇介绍在Mac平台下使用Qt阻止Mac系统休眠。 要调用Mac系统的API&am…

vulhub中GitLab 任意文件读取漏洞复现(CVE-2016-9086)

GitLab是一款Ruby开发的Git项目管理平台。在8.9版本后添加的“导出、导入项目”功能&#xff0c;因为没有处理好压缩包中的软连接&#xff0c;已登录用户可以利用这个功能读取服务器上的任意文件。 环境运行后&#xff0c;访问http://your-ip:8080即可查看GitLab主页&#xff0…

PC电脑如何使用HDMI连接小米电视当显示屏

使用HDMI连接好当时和电脑&#xff0c;HDMI2.0会更清晰&#xff1b;小米电视会自动弹窗提示你有HDMI 接口连接&#xff0c;或者你进入信号源进行选择即可&#xff1b;需要平时我们电脑的显示器正常连接&#xff0c;然后按 win p &#xff0c;选择 扩展 屏幕&#xff1b; 进入设…

27-2 文件上传漏洞 - 前端绕过

环境准备:构建完善的安全渗透测试环境:推荐工具、资源和下载链接_渗透测试靶机下载-CSDN博客 前端绕过思路 - 禁用 JavaScript: 背景: 当前开发行业大多采用前后端分离模式,后端使用多种开发语言如 PHP、Java 等,而前端主要使用 JavaScript(JS)。因此,禁用 JavaScrip…

开设新量子计算中心!IonQ 全力加速量子商业化

内容来源&#xff1a;量子前哨&#xff08;ID&#xff1a;Qforepost&#xff09; 编辑丨慕一 编译/排版丨浪味仙 沛贤 深度好文&#xff1a;1000字丨8分钟阅读 近日&#xff0c;量子计算公司IonQ对外宣布&#xff0c;将在华盛顿开设一家新量子中心。公告里还提出&#xff0c…

html5黑色大气的个人博客全屏滚动个人主页源码HTML+JS+CSS

html5黑色大气的个人博客全屏滚动个人主页源码HTMLJSCSS

软件测试 自动化测试selenium 基础篇

文章目录 1. 什么是自动化测试&#xff1f;1.1 自动化分类 2. 什么是 Selenium &#xff1f;3. 为什么使用 Selenium &#xff1f;4. Selenium 工作原理5. Selenium 环境搭建 1. 什么是自动化测试&#xff1f; 将人工要做的测试工作进行转换&#xff0c;让代码去执行测试工作 …

【Frida】04_Frida中使用TypeScript脚本(采坑)

▒ 目录 ▒ &#x1f6eb; 导读需求开发环境演示目标 1️⃣ 操作步骤安装node 20.10.0在 VSCode 中打开项目目录初始化一个 NodeJS 项目安装 TypeScript初始化 TypeScript 项目安装依赖配置 TypeScript编写代码编译设置编译脚本运行&#xff0c;查看结果 2️⃣ 采坑frida-compi…