数字多空策略(实盘+回测+数据)

 

数量技术宅团队在CSDN学院推出了量化投资系列课程

欢迎有兴趣系统学习量化投资的同学,点击下方链接报名:

量化投资速成营(入门课程)

Python股票量化投资

Python期货量化投资

Python数字货币量化投资

C++语言CTP期货交易系统开发

数字货币JavaScript语言量化交易系统开发


技术宅此前分享的数字策略多为单边策略。单边策略最大的特征是在承担一定的波动风险前提下获取高收益率。而对于许多稳健的、中、低风险偏好的投资者来说,在承担尽可能小的波动风险前提下,获取尽可能高的收益率,是他们追求的目标。

本期,我们将推出一期同时兼顾低风险和高收益的优质策略:数字货币多空策略。策略不受整个数字货币市场涨跌的影响、回撤小同时长期运行也有极高的收益率,让我们一起来看看吧!

策略逻辑

首先,我们简要介绍“数字货币多空策略”的策略逻辑:

随着交易所挂牌交易的合约数量不断增加,同时合约相互间相关性不断降低,有更多的币种不与BTC、ETH等主流币同涨同跌,呈现涨跌分化的状态,因此每天都有不同币种的做多、做空机会。下图是我们随机选取某天币安所有U本位合约的涨跌幅排序,可以看出币种涨跌分化很明显,涨幅排名第一的ICPUSDT和跌幅排名第一的BSVUSDT的24h涨跌幅差距超过40%,而涨幅排名前5名币种的24h涨跌幅差距也超过20%,多空分化产生的交易机会很多、价差收益也很可观。

那么,问题的关键就在如何有效筛选出多空分化的币种,从而实现合约的价差收益。我们通过全量历史数据+海量因子筛选测试,最终确定了三个最有效的信号因子,以及之对应的三个多空策略,每个多空策略的多空币种市值相当,实现了方向上的完全对冲,不受整个数字货币市场涨跌的影响,能够在低风险的前提下,有效赚取币种间的相对强弱收益

三个策略的目标执行周期不同,因此在捕捉行情的时间维度上也有一定的分散度。三策略既可以单策略独立运行,也可以三策略组合运行。组合运行的策略收益更稳定、回撤更小

回测绩效

三策略通用测试参数:测试周期从2020-1-1测试到2023年末共计4年时间;交易成本按照单次多空交易千分之二扣除(足够覆盖交易手续费与盘口价差成本);测试杠杆采用2倍杠杆;单利测试。

我们先分别看三策略单策略绩效:

策略一:累积收益率超过17.5倍,年化收益率超过437.5%,单次多空交易利润3.7%,最大回撤率<20%。

策略二:累积收益率同样超过17.5倍,年化收益率超过437.5%,单次多空交易利润2.6%,最大回撤率<25%

策略三:累积收益率超过16倍,年化收益率超过400%,单次多空交易利润1.4%,最大回撤率<15%

再来看组合绩效,组合绩效是同时运行三个多空策略所产生的效果,组合策略累积收益率同样超过17.5倍,年化收益率超过437.5%,单次多空交易利润2.5%,最大回撤率<15%。可以看出,组合策略在实现不低于单策略收益率的同时,最大回撤率更低,运行也更稳健,真正创造了低风险、高收益的特征

通过历史测试可以看到,多空策略在低风险的环境下,在2倍杠杆的条件下,实现了年均超4倍的利润,其盈利能力完全不低于目前市场中的大多数单边策略

实盘业绩

我们根据回测确定的最佳三策略组合,并编写了实盘交易系统。并在测试账户进行为期两个半月多的实盘交易(同样采用2倍杠杆),累积产生了超过150%的收益率!(ps:尽管BTC处于大牛市,策略仍大幅跑赢BTC涨幅),实盘业绩曲线如下。

附上部分随机截取实盘交易记录

至此,数字多空策略通过实盘业绩验证。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/464248.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【深度学习模型移植】用torch普通算子组合替代torch.einsum方法

首先不得不佩服大模型的强大之处&#xff0c;在算法移植过程中遇到einsum算子在ONNX中不支持&#xff0c;因此需要使用普通算子替代。参考TensorRT - 使用torch普通算子组合替代torch.einsum爱因斯坦求和约定算子的一般性方法。可以写出简单的替换方法&#xff0c;但是该方法会…

【C#】【SAP2000】SAP2000中批量修改指定荷载工况下所有Frame对象的温度荷载

if (build true){// 连接到正在运行的 SAP2000cOAPI mySapObject (cOAPI) System.Runtime.InteropServices.Marshal.GetActiveObject("CSI.SAP2000.API.SapObject");cSapModel mySapModel mySapObject.SapModel;// 获取所有框架单元的总数int numberFrames 0;str…

鸿蒙Harmony应用开发—ArkTS声明式开发(基础手势:Search)

搜索框组件&#xff0c;适用于浏览器的搜索内容输入框等应用场景。 说明&#xff1a; 该组件从API Version 8开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 子组件 无 接口 Search(options?: { value?: string, placeholder?: Reso…

[论文精读]Dynamic Coarse-to-Fine Learning for Oriented Tiny Object Detection

论文网址&#xff1a;[2304.08876] 用于定向微小目标检测的动态粗到细学习 (arxiv.org) 论文代码&#xff1a;https://github.com/ChaselTsui/mmrotate-dcfl 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&…

网站安全监测:守护网络空间的坚实防线

随着互联网技术的飞速发展和广泛应用&#xff0c;网站已成为企业、机构和个人展示形象、提供服务、传递信息的重要平台。然而&#xff0c;与此同时&#xff0c;网站也面临着日益严重的安全威胁。黑客攻击、数据泄露、恶意软件等安全问题频发&#xff0c;给网站运营者带来了巨大…

FFplay使用滤镜添加字幕到现有视频显示

1.创建字幕文件4k.srt 4k.srt内容: 1 00:00:01.000 --> 00:00:30.000 日照香炉生紫烟2 00:00:31.000 --> 00:00:60.000 遥看瀑布挂前川3 00:01:01.000 --> 00:01:30.000 飞流直下三千尺4 00:01:31.000 --> 00:02:00.000 疑是银河落九天2.通过使用滤镜显示字幕在视…

ping和telnet的区别

ping是ICMP协议&#xff0c;只包含控制信息没有端口&#xff0c;用于测试两个网络主机之间网络是否畅通 telnet是TCP协议&#xff0c;用于查看目标主机某个端口是否开发。 总结&#xff1a;ping是物理计算机间的网络互通检查&#xff0c;telnet是应用服务间的访问连通检查&am…

GPU密集型计算性能优化的方法和技术

对GPU密集型计算进行性能优化的方法和技术多种多样。通过一些优化策略和技术需要综合考虑应用程序的具体需求、所使用的GPU硬件、以及编程模型和库的选择。通过不断地分析和调整&#xff0c;可以实现GPU计算性能的持续提升。以下是一些常用的优化策略和技术&#xff1a; 算法优…

Oracle 部署及基础使用

1. Oracle 简介 Oracle Database&#xff0c;又名 Oracle RDBMS&#xff0c;简称 Oracle Oracle系统&#xff0c;即是以Oracle关系数据库为数据存储和管理作为构架基础&#xff0c;构建出的数据库管理系统。是目前最流行的客户/服务器&#xff08;client/server&#xff09;或…

监视和内存观察

监视和内存观察 5.监视和内存观察5.1 监视5.2 内存 5.监视和内存观察 在调试的过程中我们&#xff0c;如果要观察代码执行过程中&#xff0c;上下文环境中的变量的值&#xff0c;有哪些方法呢&#xff1f; 这些观察的前提条件一定是开始调试后观察&#xff0c;比如&#xff1…

金枪鱼群优化算法TSO优化BiLSTM-ATTENTION实现风力发电功率预测(matlab)

金枪鱼群优化算法TSO优化BiLSTM-ATTENTION实现风力发电功率预测&#xff08;matlab&#xff09; TSO-BiLSTM-Attention金枪鱼群算法优化长短期记忆神经网络结合注意力机制的数据回归预测 Matlab语言。 金枪鱼群优化算法&#xff08;Tuna Swarm Optimization&#xff0c;TSO)是一…

upload-labs第一关

上一篇文章中搭建好了upload-labs环境&#xff0c;接下来进行第一关的尝试&#xff0c;我也是第一次玩这个挺有意思。 1、第一关的界面是这样的先不看其他的源码&#xff0c;手动尝试下试试。 2、写一个简单的php一句话木马 3、直接上传&#xff0c;提示必须要照片格式的文…

论文阅读——BLIP

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation &#xff08;1&#xff09;单模态编码器&#xff0c;它分别对图像和文本进行编码。图像编码器用ViT&#xff0c;并使用附加的 [CLS] 标记来表示全局图像特征。文本…

20240314-2-字符串string

1.最长公共前缀 编写一个函数来查找字符串数组中的最长公共前缀。 如果不存在公共前缀&#xff0c;返回空字符串 “”。 示例 1: 输入: [“flower”,“flow”,“flight”] 输出: “fl” 示例 2: 输入: [“dog”,“racecar”,“car”] 输出: “” 解释: 输入不存在公共前缀…

面向对象编程第三式: 多态 (Java篇)

本篇会加入个人的所谓‘鱼式疯言’ ❤️❤️❤️鱼式疯言:❤️❤️❤️此疯言非彼疯言 而是理解过并总结出来通俗易懂的大白话, 小编会尽可能的在每个概念后插入鱼式疯言,帮助大家理解的. &#x1f92d;&#x1f92d;&#x1f92d;可能说的不是那么严谨.但小编初心是能让更多人…

brpc之ResourcePool

简介 ResourcePool用于管理资源&#xff0c;负责资源的分配以及回收 结构 BlockGroup&#xff1a;资源池中包含多个BlockGroup&#xff0c;最多65536个 Block&#xff1a;一个BlockGroup中包含多个Block&#xff0c;最多(1<<16)个&#xff1b;1个Block中包含BLOCK_NITE…

浅谈C/C++的常量const、指针和引用问题

今天我们来探讨C/C中const、指针和引用的相关问题。这些概念是编程中的重要组成部分&#xff0c;它们的正确使用对于代码的可读性和可维护性至关重要。通过深入了解const的不可变性、指针的灵活性以及引用的简洁性&#xff0c;我们能够更好地掌握编程的精髓&#xff0c;并写出更…

PLC_博图系列☞基本指令“SET_BF”置位位域

PLC_博图系列☞基本指令“SET_BF”置位位域 文章目录 PLC_博图系列☞基本指令“SET_BF”置位位域背景介绍SET_BF&#xff1a;置位位域说明类型为 PLC 数据类型、STRUCT 或 ARRAY 的位域参数示例 关键字&#xff1a; PLC、 西门子、 博图、 Siemens 、 SET_BF 背景介绍 这是…

【Algorithms 4】算法(第4版)学习笔记 19 - 6.0.4 网络流算法

文章目录 前言参考目录学习笔记1&#xff1a;介绍1.1&#xff1a;最小切分问题1.2&#xff1a;最大流问题1.3&#xff1a;小结2&#xff1a;Ford-Fulkerson 算法&#xff08;FF 算法&#xff09;2.1&#xff1a;介绍2.2&#xff1a;问题3&#xff1a;最大流量 - 最小切分定理 m…

ConsiStory:Training-Free的主体一致性生成

Overview 一、总览二、PPT详解 ConsiStory 一、总览 题目&#xff1a; Training-Free Consistent Text-to-Image Generation 机构&#xff1a;NVIDIA, Tel-Aviv University 论文&#xff1a;https://arxiv.org/pdf/2402.03286.pdf 代码&#xff1a;https://consistory-paper.g…