爱奇艺 CTR 场景下的 GPU 推理性能优化

01

   背景介绍

GPU 目前大量应用在了爱奇艺深度学习平台上。GPU 拥有成百上千个处理核心,能够并行的执行大量指令,非常适合用来做深度学习相关的计算。在 CV(计算机视觉),NLP(自然语言处理)的模型上,已经广泛的使用了 GPU,相比 CPU 通常能够更快、更经济的完成模型的训练和推理。

CTR (Click Trough Rate) 模型广泛使用在推荐、广告、搜索等场景中,用来估算用户点击某个广告、视频的概率。在 CTR 模型的训练场景中已经大量使用了 GPU,在提升训练速度的同时和降低了所需的服务器成本。

但在推理场景下,当我们直接把训练好的模型通过 Tensorflow-serving 部署在 GPU 之后,发现推理效果并不理想。表现在:

  1. 推理延迟高,CTR 类模型通常是面向终端用户的,对于推理延迟非常敏感。

  2. GPU 利用率低,计算能力未能全部发挥出来。


02

   原因分析

分析工具

  1. Tensorflow Board,tensorflow 官方提供的工具,能够可视化的查看计算流图中各个阶段的耗时,并汇总算子的总耗时。

  2. Nsight 是 NVIDIA 面向 CUDA 开发者提供的开发工具套件,能够对 CUDA 程序进行相对底层的跟踪、调试和性能分析。

分析结论

典型的 CTR 模型输入,包含大量的稀疏类特征(如设备 ID、最近浏览视频 ID 等)。Tensorflow 的 FeatureColumn 会对这些特征进行处理,首先进行 identity/hash 操作,得到 embedding table 的 index。再经 embedding lookup 和求均值等操作后,得到对应的 embedding tensor。多个特征对应的 embedding tensor 拼接后得到一个新的 tensor,再进入后续的 DNN/Transformer 等结构。

因此每个稀疏特征在模型的输入层,都会启动若干个算子。每个算子会对应着一次或者几次 GPU 计算,即 cuda kernel。每个 cuda kernel 包括两个阶段,launch cuda kernel(启动 kernel 所必需的 overhead) 和 kernel 执行(在 cuda 核心上真正执行矩阵计算)。稀疏特征 identity/hash/embedding lookup 对应的算子计算量较小,launch kernel 的耗时往往超过 kernel 执行的时间。一般来说 CTR 模型包含了几十到几百个稀疏特征,理论上就会有数百次 launch kernel,是当前主要的性能瓶颈。

在使用 GPU 训练 CTR 模型时,没有遇到这个问题。因为训练本身是一个离线任务,不关注延迟,所以训练时候的 batch size 都可以很大。虽然仍会进行多次 launch kernel,只要执行 kernel 时候计算的样本数量足够多,lauch kernel 的开销平均到每个样本上的时间就很小了。而对于在线推理的场景,如果要求 Tensorflow Serving 收到足够的推理请求并合并批次后再进行计算,那么推理延迟就会很高。


03

   优化方案

我们的目标是在基本不改变训练代码,不改变服务框架的前提下,进行性能优化。我们很自然的想到两个方法,减少启动的 kernel 数量,提高 kernel 启动的速度。

算子融合

基本操作就是将多个连续的操作或算子合并成一个单一的算子,一方面可以减少 cuda kernel 启动的次数,另一方面可以把计算过程中一些中间结果存在寄存器或者共享内存,只在算子的最后把计算结果写入全局的 cuda 内存。

主要有两种方法

  1. 基于深度学习编译器的自动融合

  2. 针对业务的手动算子融合

自动融合

我们尝试了多种深度学习编译器,如 TVM/TensorRT/XLA,实测可以实现 DNN 部分少量算子的融合,如连续的 MatrixMat/ADD/Relu。由于 TVM/TensorRT 需要导出 onnx 等中间格式,需要修改原有模型的上线流程。所以我们通过 tf.ConfigProto() 开启 tensorflow 内置的 XLA 来进行融合。

但自动融合对稀疏特征相关的算子并没有很好的融合效果。

手动算子融合

我们很自然的想到,如果有多个特征在输入层被相同类型的 FeatureColumn 组合所处理,那么我们可以实现一个算子,把多个特征的输入拼接成数组作为算子的输入。算子的输出是一个张量,这个张量的 shape 和原本多个特征分别计算后再拼接得到的张量 shape 一致。

以原有的 IdentityCategoricalColumn + EmbeddingColumn 组合为例,我们实现了 BatchIdentiyEmbeddingLookup 算子,达到相同的计算逻辑。

为了方便算法同学使用,我们封装了一个新的 FusedFeatureLayer,来代替原生的 FeatureLayer;除了包含融合算子,还实现了以下逻辑:

  1. 融合的逻辑在推理时候生效,训练时候走原来的逻辑。

  2. 需要对特征进行排序,保证相同类型的特征可以排在一起。

  3. 由于每个特征的输入均为变长,在这里我们额外生成了一个索引数组,来标记输入数组的每个元素属于哪个特征。

对于业务来说,只需要替换原来的 FeatureLayer 即可达到融合的效果。

实测原本数百次的 launch kernel,经过手动融合后缩减到了 10 次以内。大大减少了启动 kernel 的开销。

aeba3d6703e6f86c9979d3912d02cb4f.png

4448272748297e33d6e73fc87ef3422f.png


MultiStream 提高 launch 效率

TensorFlow 本身是一个单流模型,只包含一个 Cuda Stream Group(由  Compute Stream、H2D Stream,D2H Stream 和 D2D Stream 组成)多个 kernel 只能在同一个 Compute Stream 上串行执行效率较低。即使通过多个 tensorflow 的 session 来 launch cuda kernel,在 GPU 侧仍然需要排队。

980c461eacbcfedb42ff4d57fb626465.jpeg

为此 NVIDIA 的技术团队维护了一个自己的 Tensorflow 分支,支持多个 Stream Group 同时执行。以此来提高 launch cuda kernel 的效率。我们将此特性移植到了我们的 Tensorflow Serving 里。

0989e9c5373c5da4ca9b71cc9d89f51a.png

在 Tensorflow Serving 运行时候,需要开启 Nvidia MPS,减少多个 CUDA Context 间的相互干扰。

小数据拷贝优化

在前边优化基础上,我们针对小数据拷贝进一步做了优化。当 Tensorflow Serving 从请求中反序列化出中各个特征的值后,会多次调用 cudamemcpy,将数据从 host 拷贝到 device。调用次数取决于特征数量。

大部分 CTR 类业务,实测当 batchsize 较小时和,先将数据在 host 侧拼接,再一次性的调用 cudamemcpy 效率会更高一些。

5279ede055094522af8abb1811229534.png


合并批次

GPU 场景下需要开启批次合并。默认情况下 Tensorflow Serving 是不对请求进行合并的。为了更好的利用 GPU 的并行计算能力,让一次前向计算时候可以包含更多的样本。我们在运行时候打开了 Tensorflow Serving 的 enable_batching 选项,来对多个请求进行批次合并。同时需要提供一个 batch config 文件,重点配置以下参数,以下是我们总结的一些经验。

  1. max_batch_size:一个批次允许的最大请求数量,可以稍微大一点。

  2. batch_timeout_micros:合并一个批次等待的最长时间,即使该批次的数量未达到max_batch_size,也会立即进行计算(单位是微秒),理论上延迟要求越高,这儿设置的越小,最好设置在 5 毫秒以下。

  3. num_batch_threads:最大推理并发线程,在开启了 MPS 之后,设置成 1 到 4 都可以,再多延迟会高。

在这里需要注意的是,CTR 类模型大部分输入的稀疏特征都为变长特征。如果客户端没有专门做约定,可能出现多个请求中在某个特征上的长度不一致。Tensorflow Serving 有一个默认的 padding 逻辑,给较短的请求在对应的特征上补 0。而对于变长特征使用 -1 来表示空,默认的补 0 会事实上改变原有的请求的含义。

比如用户 A 最近的观看视频 id 为 [3,5],用户 B 最近的观看视频 id 为 [7,9,10]。如果默认补齐,请求变成 [[3,5,0], [7,9,10]],在后续的处理中,模型会认为 A 最近观看了 id 为 3,5,0 的 3 个视频。

因此我们修改了 Tensorflow Serving 响应的补齐逻辑,遇到这种情况会补齐为 [[3,5,-1], [7,9,10]]。第一行的含义仍然是观看了视频 3,5。

04

   最终效果

经过各种上述各种优化,在延迟和吞吐量满足了我们的需求,并落地在推荐个性化 Push、瀑布流业务上。业务效果如下:

  1. 吞吐量相比原生Tensorflow GPU 容器提升 6 倍以上

  2. 延迟和 CPU 基本一致,满足业务需求

  3. 支持相同的 QPS 时候,成本降低 40% 以上

7c711e47f79ea1fa32e962fe4a8ae91b.jpeg

也许你还想看

爱奇艺数据湖实战 - Hive数仓平滑入湖

稀疏大模型在爱奇艺广告排序场景中的实践

爱奇艺图片格式演进

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/463750.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Spring炼气之路(炼气一层)

目录 一、IOC 1.1 控制反转是什么? 1.2 什么是IOC容器? 1.3 IOC容器的作用 1.4 IOC容器存放的是什么? 二、DI 2.1 依赖注入是什么? 2.2 依赖注入的作用 三、IOC案例实现 3.1下载Maven 3.2 配置Maven中的settings.xml文…

考研C语言复习进阶(2)

目录 1. 字符指针 2. 指针数组 3. 数组指针 3.1 数组指针的定义 3.2 &数组名VS数组名 4. 函数指针 5. 函数指针数组 6. 指向函数指针数组的指针 7. 回调函数 8.三步辗转法 9. 指针和数组笔试题解析 10. 指针笔试题 指针的主题,我们在初级阶段的《指…

​​SQLiteC/C++接口详细介绍之sqlite3类(十一)

返回目录:SQLite—免费开源数据库系列文章目录 上一篇:​​SQLiteC/C接口详细介绍之sqlite3类(十) 下一篇:​​SQLiteC/C接口详细介绍之sqlite3类(十二)(未发表) 33.sq…

JavaWeb07-会话

目录 一、会话跟踪技术 1.概述 2.实现方式 3.Cookie (1)基本使用 (2)原理 (3)存活时间 (4)存储中文 4.Session (1)基本使用 (2&#x…

C#,图论与图算法,寻找图(Graph)中的桥(Bridge)算法与源代码

1 图(Graph)中的桥(Bridge) 如果删除无向连通图中的边会断开该图的连接,则该边就是桥。对于断开连接的无向图,定义类似,桥接是一种边移除,它增加了断开连接的组件的数量。 与连接点一样,网桥代表连接网络中的漏洞,对于设计可靠的网络非常有用。例如,在有线计算机网…

哪些视频编辑软件最好用?会声会影怎么样?2024会声会影激活

随着数字化时代的到来,视频编辑软件的需求量也逐渐增加。为了满足用户的需求,市面上涌现了很多的视频编辑软件,让用户不知道该如何选择。今天我们来聊聊哪些视频编辑软件最好用,以及会声会影怎么样? 视频编辑软件的选…

分布式事务基础理论解析

一、概述 1.1 定义 为了解决java 多个节点之间数据一致性问题。产生的核心原因是:资源存储的分布性。比如多个数据库,或者Mysql和Redis的数据一致性等。 1.2 产生场景 跨JVM进程产生分布式事务。即服务A和服务B分别有对应的数据库跨数据库实例产生分…

Qt QTableWidget 实现行选中及行悬浮高亮

表格整行的 selected、hover 高亮需求很常见,但使用 Qt 提供的开箱即用的方法根本无法实现这个需求(至少在当前的时间节点是不行的);想要实现这个效果必须要费一点点力气,我们尽量选择较为简单的方法。 话不多说&…

yolo项目中如何训练自己的数据集

1.收集自己需要标注的图片 2.打开网站在线标注网站 2.1 点击右下角Get Start 2.2点击这里上传自己的图片 上传成功后有英文的显示 点击左边的Object Detection,表示用于目标检测 2.3选择新建标签还是从本地加载标签 如果是本地加载标签(左边&#…

Linux/Ubuntu/Debian从控制台启动程序隐藏终端窗口

如果你想从终端运行应用程序但隐藏终端窗口. 你可以这样做: 在后台运行: 你只需在命令末尾添加一个与号 (&) 即可在后台运行它。 例如: your_command &将 your_command 替换为你要运行的命令。 这将在后台启动该命令&#xff0c…

科研绘图二:箱线图(抖动散点)

R语言绘图系列—箱线图抖动散点 (二): 科研绘图一:箱线图(抖动散点) 文章目录 R语言绘图系列---箱线图抖动散点(二): 科研绘图一:箱线图(抖动散点) 前言一、…

中兴交换机与H3C交换机配置链路聚合802.3ad

难得见到一回中兴交换机 中兴交换机型号: ZX8902 这台中兴要与H3C交换机建立port-channel, 接口为access vlan 100 拓扑如下: 1 中兴交换机配置 1.1 创建 smart group,对,没有看错,中兴的port-channel叫…

【李沐论文精读】多模态论文串讲(上)和(下)精读

参考:多模态论文串讲上、多模态论文串讲下、多模态论文串讲 论文链接放在每一小节前面。 Review: ViLT论文的研究动机其实就是为了把目标检测从视觉端拿掉。图文多模态任务,关键是提取视觉特征和文本特征,然后对齐。在之前的多模态…

LeetCode 7 / 100

哈希表、双指针 哈希表两数之和字母异位词分组最长连续序列 双指针移动零盛最多水的容器三数之和接雨水 LeetCode 1.两数之和 LeetCode 49. 字母异位词分组 LeetCode 128. 最长连续序列 LeetCode [283. 移动零](https://leetcode.cn/problems/move-zeroes/?envTypestudy-plan-…

Python基础(八)之流程控制

Python基础(八)之流程控制 Python控制流程分为三种接口: 顺序结构选择结构循环结构 1、顺序结构 程序代码自上而下运行,逐条执行每一条Python代码,不重复执行任何代码,也不会跳过任何代码。 当语句与语…

第七篇【传奇开心果系列】Python自动化办公库技术点案例示例:深度解读数据分析数据挖掘的几个重要算法为代表的核心技术

传奇开心果博文系列 系列博文目录Python自动化办公库技术点案例示例系列 博文目录前言一、重要算法介绍二、回归分析示例代码三、聚类分析示例代码四、决策树示例代码五、关联规则挖掘示例代码六、神经网络示例代码七、支持向量机示例代码八、聚类分析示例代码九、主成分分析示…

【Hadoop大数据技术】——MapReduce经典案例实战(倒排索引、数据去重、TopN)

📖 前言:MapReduce是一种分布式并行编程模型,是Hadoop核心子项目之一。实验前需确保搭建好Hadoop 3.3.5环境、安装好Eclipse IDE 🔎 【Hadoop大数据技术】——Hadoop概述与搭建环境(学习笔记) 目录 &#…

【集成开发环境】-VS Code:C/C++ 环境配置

简介 VS Code,全称Visual Studio Code,是一款由微软开发的跨平台源代码编辑器。它支持Windows、Linux和macOS等操作系统,并且具有轻量级、高效、可扩展等特点,深受广大开发者的喜爱。 VS Code拥有丰富的功能特性,包括…

Python算法100例-4.1 将真分数分解为埃及分数

完整源代码项目地址,关注博主私信源代码后可获取 1.问题描述2.问题分析3.算法设计4.补充知识点5.确定程序框架6.完整的程序 1.问题描述 现输入一个真分数,请将该分数分解为埃及分数。 2.问题分析 真分数(a proper…

vulture,一个有趣的 Python 死代码清除库!

目录 前言 什么是 Python Vulture 库? 核心功能 使用方法 1. 安装 Vulture 库 2. 使用 Vulture 命令行工具 3. 定制规则 实际应用场景 1. 代码库维护 2. 项目迁移和重构 3. 优化性能 4. 代码审查和质量检查 总结 前言 大家好,今天为大家分享一个好…