Java8中Stream流API最佳实践Lambda表达式使用示例

文章目录

    • 一、创建流
    • 二、中间操作和收集操作
      • 筛选 filter
      • 去重distinct
      • 截取
      • 跳过
      • 映射
      • 合并多个流
      • 是否匹配任一元素:anyMatch
      • 是否匹配所有元素:allMatch
      • 是否未匹配所有元素:noneMatch
      • 获取任一元素findAny
      • 获取第一个元素findFirst
      • 归约
      • 数值流的使用
      • 中间操作和收集操作总结
      • Collector 收集
      • 归约
      • 一般性归约
      • 汇总
      • 分组
      • 多级分组
      • 转换类型
      • 数据分区
      • 并行流

在这里插入图片描述
stream在使用中主要分为以上图示阶段,接下来将详细展示java8中stream api的具体的实践使用案例。

一、创建流

在使用流之前,首先需要拥有一个数据源,并通过StreamAPI提供的一些方法获取该数据源的流对象。数据源可以有多种形式:

1. 集合

这种数据源较为常用,通过stream()方法即可获取流对象:

List<Person> list = new ArrayList<Person>(); 
Stream<Person> stream = list.stream();

2. 数组

通过Arrays类提供的静态函数stream()获取数组的流对象:

String[] names = {"chaimm","peter","john"};
Stream<String> stream = Arrays.stream(names);

3. 值

直接将几个值变成流对象:

Stream<String> stream = Stream.of("chaimm","peter","john");

4. 文件

try(Stream lines = Files.lines(Paths.get(“文件路径名”),Charset.defaultCharset())){
    //可对lines做一些操作
}catch(IOException e){
}

5. iterator

创建无限流

Stream.iterate(0, n -> n + 2)
      .limit(10)
      .forEach(System.out::println);

PS:Java7简化了IO操作,把打开IO操作放在try后的括号中即可省略关闭IO的代码。

二、中间操作和收集操作

筛选 filter

filter 函数接收一个Lambda表达式作为参数,该表达式返回boolean,在执行过程中,流将元素逐一输送给filter,并筛选出执行结果为true的元素。
如,筛选出所有学生:

List<Person> result = list.stream()
                    .filter(Person::isStudent)
                    .collect(toList());

去重distinct

去掉重复的结果:

List<Person> result = list.stream()
                    .distinct()
                    .collect(toList());

截取

截取流的前N个元素:

List<Person> result = list.stream()
                    .limit(3)
                    .collect(toList());

跳过

跳过流的前n个元素:

List<Person> result = list.stream()
                    .skip(3)
                    .collect(toList());

映射

对流中的每个元素执行一个函数,使得元素转换成另一种类型输出。流会将每一个元素输送给map函数,并执行map中的Lambda表达式,最后将执行结果存入一个新的流中。
如,获取每个人的姓名(实则是将Perosn类型转换成String类型):

List<Person> result = list.stream()
                    .map(Person::getName)
                    .collect(toList());

合并多个流

例:列出List中各不相同的单词,List集合如下:

List<String> list = new ArrayList<String>();
list.add("I am a boy");
list.add("I love the girl");
list.add("But the girl loves another girl");

思路如下:

首先将list变成流:

list.stream();

按空格分词:

list.stream()
            .map(line->line.split(" "));

分完词之后,每个元素变成了一个String[]数组。

将每个 String[] 变成流:

list.stream()
            .map(line->line.split(" "))
            .map(Arrays::stream)

此时一个大流里面包含了一个个小流,我们需要将这些小流合并成一个流。

将小流合并成一个大流:用 flatMap 替换刚才的 map

list.stream()
    .map(line->line.split(" "))
    .flatMap(Arrays::stream)

去重

list.stream()
    .map(line->line.split(" "))
    .flatMap(Arrays::stream)
    .distinct()
    .collect(toList());

是否匹配任一元素:anyMatch

anyMatch用于判断流中是否存在至少一个元素满足指定的条件,这个判断条件通过Lambda表达式传递给anyMatch,执行结果为boolean类型。
如,判断list中是否有学生:

boolean result = list.stream()
            .anyMatch(Person::isStudent);

是否匹配所有元素:allMatch

allMatch用于判断流中的所有元素是否都满足指定条件,这个判断条件通过Lambda表达式传递给anyMatch,执行结果为boolean类型。
如,判断是否所有人都是学生:

boolean result = list.stream()
            .allMatch(Person::isStudent);

是否未匹配所有元素:noneMatch

noneMatch与allMatch恰恰相反,它用于判断流中的所有元素是否都不满足指定条件:

boolean result = list.stream()
            .noneMatch(Person::isStudent);

获取任一元素findAny

findAny能够从流中随便选一个元素出来,它返回一个Optional类型的元素。

Optional<Person> person = list.stream().findAny();

获取第一个元素findFirst

Optional<Person> person = list.stream().findFirst();

归约

归约是将集合中的所有元素经过指定运算,折叠成一个元素输出,如:求最值、平均数等,这些操作都是将一个集合的元素折叠成一个元素输出。

在流中,reduce函数能实现归约。
reduce函数接收两个参数:

  1. 初始值
  2. 进行归约操作的Lambda表达式

元素求和:自定义Lambda表达式实现求和

例:计算所有人的年龄总和

@Test
public void contextLoads() {
   List<Person> list = new ArrayList<>();
   list.add(new Person().setAge(20));
   list.add(new Person().setAge(25));
   int age = list.stream().map(Person::getAge).reduce(0, Integer::sum);
   System.out.println(age);
}

@Data
@Accessors(chain = true)
class Person {
   private int age;
}
  1. reduce的第一个参数表示初试值为0;
  2. reduce的第二个参数为需要进行的归约操作,它接收一个拥有两个参数的Lambda表达式,reduce会把流中的元素两两输给Lambda表达式,最后将计算出累加之和。

元素求和:使用Integer.sum函数求和

上面的方法中我们自己定义了Lambda表达式实现求和运算,如果当前流的元素为数值类型,那么可以使用Integer提供了sum函数代替自定义的Lambda表达式,如:

int age = list.stream().reduce(0, Integer::sum);

Integer类还提供了 minmax 等一系列数值操作,当流中元素为数值类型时可以直接使用。

数值流的使用

采用reduce进行数值操作会涉及到基本数值类型和引用数值类型之间的装箱、拆箱操作,因此效率较低。
当流操作为纯数值操作时,使用数值流能获得较高的效率。

将普通流转换成数值流

StreamAPI提供了三种数值流:IntStream、DoubleStream、LongStream,也提供了将普通流转换成数值流的三种方法:mapToInt、mapToDouble、mapToLong。
如,将Person中的age转换成数值流:

IntStream stream = list.stream().mapToInt(Person::getAge);

数值计算

每种数值流都提供了数值计算函数,如max、min、sum等。如,找出最大的年龄:

OptionalInt maxAge = list.stream()
                                .mapToInt(Person::getAge)
                                .max();

由于数值流可能为空,并且给空的数值流计算最大值是没有意义的,因此max函数返回OptionalInt,它是Optional的一个子类,能够判断流是否为空,并对流为空的情况作相应的处理。
此外,mapToInt、mapToDouble、mapToLong进行数值操作后的返回结果分别为:OptionalInt、OptionalDouble、OptionalLong

中间操作和收集操作总结

操作类型返回类型使用的类型/函数式接口函数描述符
filter中间Stream<T>Predicate<T>T -> boolean
distinct中间Stream<T>
skip中间Stream<T>long
map中间Stream<R>Function<T, R>T -> R
flatMap中间Stream<R>Function<T, Stream<R>>T -> Stream<R>
limit中间Stream<T>long
sorted中间Stream<T>Comparator<T>(T, T) -> int
anyMatch终端booleanPredicate<T>T -> boolean
noneMatch终端booleanPredicate<T>T -> boolean
allMatch终端booleanPredicate<T>T -> boolean
findAny终端Optional<T>
findFirst终端Optional<T>
forEach终端voidConsumer<T>T -> void
collect终端RCollector<T, A, R>
reduce终端Optional<T>BinaryOperator<T>(T, T) -> T
count终端long

Collector 收集

收集器用来将经过筛选、映射的流进行最后的整理,可以使得最后的结果以不同的形式展现。
collect 方法即为收集器,它接收 Collector 接口的实现作为具体收集器的收集方法。
Collector 接口提供了很多默认实现的方法,我们可以直接使用它们格式化流的结果;也可以自定义 Collector 接口的实现,从而定制自己的收集器。

归约

流由一个个元素组成,归约就是将一个个元素“折叠”成一个值,如求和、求最值、求平均值都是归约操作。

一般性归约

若你需要自定义一个归约操作,那么需要使用 Collectors.reducing 函数,该函数接收三个参数:

  • 第一个参数为归约的初始值
  • 第二个参数为归约操作进行的字段
  • 第三个参数为归约操作的过程

汇总

Collectors类专门为汇总提供了一个工厂方法:Collectors.summingInt
它可接受一 个把对象映射为求和所需int的函数,并返回一个收集器;该收集器在传递给普通的 collect 方法后即执行我们需要的汇总操作。

分组

数据分组是一种更自然的分割数据操作,分组就是将流中的元素按照指定类别进行划分,类似于SQL语句中的 GROUPBY

多级分组

多级分组可以支持在完成一次分组后,分别对每个小组再进行分组。
使用具有两个参数的 groupingBy 重载方法即可实现多级分组。

  • 第一个参数:一级分组的条件
  • 第二个参数:一个新的 groupingBy 函数,该函数包含二级分组的条件

Collectors 类的静态工厂方法

工厂方法返回类型用途示例
toListList<T>把流中所有项目收集到一个 ListList<Project> projects = projectStream.collect(toList());
toSetSet<T>把流中所有项目收集到一个 Set,删除重复项Set<Project> projects = projectStream.collect(toSet());
toCollectionCollection<T>把流中所有项目收集到给定的供应源创建的集合Collection<Project> projects = projectStream.collect(toCollection(), ArrayList::new);
countingLong计算流中元素的个数long howManyProjects = projectStream.collect(counting());
summingIntInteger对流中项目的一个整数属性求和int totalStars = projectStream.collect(summingInt(Project::getStars));
averagingIntDouble计算流中项目 Integer 属性的平均值double avgStars = projectStream.collect(averagingInt(Project::getStars));
summarizingIntIntSummaryStatistics收集关于流中项目 Integer 属性的统计值,例如最大、最小、 总和与平均值IntSummaryStatistics projectStatistics = projectStream.collect(summarizingInt(Project::getStars));
joiningString连接对流中每个项目调用 toString 方法所生成的字符串String shortProject = projectStream.map(Project::getName).collect(joining(", "));
maxByOptional<T>按照给定比较器选出的最大元素的 Optional, 或如果流为空则为 Optional.empty()Optional<Project> fattest = projectStream.collect(maxBy(comparingInt(Project::getStars)));
minByOptional<T>按照给定比较器选出的最小元素的 Optional, 或如果流为空则为 Optional.empty()Optional<Project> fattest = projectStream.collect(minBy(comparingInt(Project::getStars)));
reducing归约操作产生的类型从一个作为累加器的初始值开始,利用 BinaryOperator 与流中的元素逐个结合,从而将流归约为单个值int totalStars = projectStream.collect(reducing(0, Project::getStars, Integer::sum));
collectingAndThen转换函数返回的类型包含另一个收集器,对其结果应用转换函数int howManyProjects = projectStream.collect(collectingAndThen(toList(), List::size));
groupingByMap<K, List<T>>根据项目的一个属性的值对流中的项目作问组,并将属性值作 为结果 Map 的键Map<String,List<Project>> projectByLanguage = projectStream.collect(groupingBy(Project::getLanguage));
partitioningByMap<Boolean,List<T>>根据对流中每个项目应用断言的结果来对项目进行分区Map<Boolean,List<Project>> vegetarianDishes = projectStream.collect(partitioningBy(Project::isVegetarian));

转换类型

有一些收集器可以生成其他集合。比如前面已经见过的 toList,生成了 java.util.List 类的实例。
还有 toSettoCollection,分别生成 SetCollection 类的实例。
到目前为止, 我已经讲了很多流上的链式操作,但总有一些时候,需要最终生成一个集合——比如:

  • 已有代码是为集合编写的,因此需要将流转换成集合传入;
  • 在集合上进行一系列链式操作后,最终希望生成一个值;
  • 写单元测试时,需要对某个具体的集合做断言。

使用 toCollection,用定制的集合收集元素

stream.collect(toCollection(TreeSet::new));

还可以利用收集器让流生成一个值。 maxByminBy 允许用户按某种特定的顺序生成一个值。

数据分区

分区是分组的特殊情况:由一个断言(返回一个布尔值的函数)作为分类函数,它称分区函数。
分区函数返回一个布尔值,这意味着得到的分组 Map 的键类型是 Boolean,于是它最多可以分为两组: true是一组,false是一组。

分区的好处在于保留了分区函数返回true或false的两套流元素列表。

并行流

并行流就是一个把内容分成多个数据块,并用不不同的线程分别处理每个数据块的流。最后合并每个数据块的计算结果。

将一个顺序执行的流转变成一个并发的流只要调用 parallel() 方法

public static long parallelSum(long n){
    return Stream.iterate(1L, i -> i +1).limit(n).parallel().reduce(0L,Long::sum);
}

将一个并发流转成顺序的流只要调用 sequential() 方法

stream.parallel().filter(...).sequential().map(...).parallel().reduce();

这两个方法可以多次调用,只有最后一个调用决定这个流是顺序的还是并发的。

并发流使用的默认线程数等于你机器的处理器核心数。

通过这个方法可以修改这个值,这是全局属性。

System.setProperty("java.util.concurrent.ForkJoinPool.common.parallelism", "12");

并非使用多线程并行流处理数据的性能一定高于单线程顺序流的性能,因为性能受到多种因素的影响。
如何高效使用并发流的一些建议:

  1. 如果不确定, 就自己测试。
  2. 尽量使用基本类型的流 IntStream, LongStream, DoubleStream
  3. 有些操作使用并发流的性能会比顺序流的性能更差,比如limit,findFirst,依赖元素顺序的操作在并发流中是极其消耗性能的。findAny的性能就会好很多,应为不依赖顺序。
  4. 考虑流中计算的性能(Q)和操作的性能(N)的对比, Q表示单个处理所需的时间,N表示需要处理的数量,如果Q的值越大, 使用并发流的性能就会越高。
  5. 数据量不大时使用并发流,性能得不到提升。
  6. 考虑数据结构:并发流需要对数据进行分解,不同的数据结构被分解的性能时不一样的。

流的数据源和可分解性

可分解性
ArrayList非常好
LinkedList
IntStream.range非常好
Stream.iterate
HashSet
TreeSet

流的特性以及中间操作对流的修改都会对数据对分解性能造成影响。 比如固定大小的流在任务分解的时候就可以平均分配,但是如果有filter操作,那么流就不能预先知道在这个操作后还会剩余多少元素。

考虑终端操作的性能:如果终端操作在合并并发流的计算结果时的性能消耗太大,那么使用并发流提升的性能就会得不偿失。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/463650.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

在线BLOG网|基于springboot框架+ Mysql+Java+JSP技术的在线BLOG网设计与实现(可运行源码+数据库+设计文档)

推荐阅读100套最新项目 最新ssmjava项目文档视频演示可运行源码分享 最新jspjava项目文档视频演示可运行源码分享 最新Spring Boot项目文档视频演示可运行源码分享 目录 前台功能效果图 管理员功能登录前台功能效果图 系统功能设计 数据库E-R图设计 lunwen参考 摘要 研究…

C语言学习过程总结(18)——指针(6)

一、数组指针变量 在上一节中我们提到了&#xff0c;指针数组的存放指针的数组&#xff0c;那数组指针变量是什么呢&#xff1f; 显而易见&#xff0c;数组指针变量是指针 同样类比整型指针变量和字符指针变量里面分别存放的是整型变量地址和字符变量地址&#xff0c;我们可以…

每周AI新闻(2024年第11周)Meta公布Llama 3集群细节 | Sora将于年内推出 | 全球首个AI软件工程师发布

这里是陌小北&#xff0c;一个正在研究硅基生命的碳基生命。正在努力成为写代码的里面背诗最多的&#xff0c;背诗的里面最会写段子的&#xff0c;写段子的里面代码写得最好的…厨子。 每周日解读每周AI大事件。 欢迎关注同名公众号【陌北有棵树】&#xff0c;关注AI最新技术…

第二十四天-数据可视化Matplotlib

目录 1.介绍 2.使用 1. 安装&#xff1a; 2.创建简单图表 3.图表类型 1.一共分为7类 2.变化 1.折线图 3.分布 ​编辑 1.直方图 2.箱型图 4.关联 1. 散点图&#xff1a; 2.热力图&#xff1a; 5.组成 1.饼图 2.条形图 6.分组 1.簇型散点图 2.分组条形图 3.分…

【ollama】linux、window系统更改模型存放位置,全网首发2024!

首先是window系统 so easy 直接进入系统环境变量添加就行 其次是linux系统 全靠自己试出来的,去Ollama官网找半天文档不知道在哪,而且linux也没有说:【 https://github.com/ollama/ollama/blob/main/docs/README.md https://github.com/ollama/ollama/blob/main/docs/li…

Ubuntu 如何安装 Beyond Compare?

Ubuntu20.04安装Beyond Compare 4.3.7 一、官网下载方式一&#xff1a;方法二&#xff1a;使用 .deb 包安装 二、安装相关依赖和bcompare三、破解常见错误解决方法 ) 文件比较工具Beyond Compare是一套由Scooter Software推出的文件比较工具。主要用途是对比两个文件夹或者文件…

HCIA——30奈奎斯特定理、香农定理

学习目标&#xff1a; 计算机网络 1.掌握计算机网络的基本概念、基本原理和基本方法。 2.掌握计算机网络的体系结构和典型网络协议&#xff0c;了解典型网络设备的组成和特点&#xff0c;理解典型网络设备的工作原理。 3.能够运用计算机网络的基本概念、基本原理和基本方法进行…

鸿蒙Harmony应用开发—ArkTS声明式开发(基础手势:TextTimer)

通过文本显示计时信息并控制其计时器状态的组件。 说明&#xff1a; 该组件从API Version 8开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 子组件 无 接口 TextTimer(options?: TextTimerOptions) 参数&#xff1a; 参数名参数类型…

Kotlin进阶之协程从入门到放弃

公众号「稀有猿诉」 原文链接 Kotlin进阶之协程从入门到放弃 协程Coroutine是最新式的并发编程范式&#xff0c;它是纯编程语言层面的东西&#xff0c;不受制于操作系统&#xff0c;轻量级&#xff0c;易于控制&#xff0c;结构严谨&#xff0c;不易出错&#xff0c;易于…

深入浅出理解 AI 生图模型

目录 引言 一、Stable Diffusion原理 首先 随后 最后 二、DDPM模型 1 资料 2 原理 扩散过程 反向过程 3 公式结论 三、优缺点 优点&#xff1a; 缺点&#xff1a; 四、改进与完事 LDM代表作 原理概括 Latent Space&#xff08;潜空间&#xff09; 五、总结 引…

提高安全投资回报:威胁建模和OPEN FAIR™风险分析

对大多数人和企业来说&#xff0c;安全意味着一种成本。但重要的是如何获得适合的量&#xff0c;而不是越多越好。然而&#xff0c;你如何决定什么时候可以有足够的安全性&#xff0c;以及你如何获得它&#xff1f;则完全是另一回事。 该篇文章是由The Open Group安全论坛主办&…

【PyTorch】进阶学习:一文详细介绍 load_state_dict() 的应用场景、实战代码示例

【PyTorch】进阶学习&#xff1a;一文详细介绍 load_state_dict() 的应用场景、实战代码示例 &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入…

vb.net+zxing.net随机彩色二维码、条形码

需要zxing库支持ZXing.NET Generate QR Code & Barcode in C# Alternatives | IronBarcode 效果图&#xff1a; 思路&#xff1a;先生成1个单位的二维码&#xff0c;然后再通过像素填充颜色&#xff0c;颜色数组要通过洗牌算法 洗牌算法 Dim shuffledCards As New List(…

C#控制台贪吃蛇

Console.Write("");// 第一次生成食物位置 // 随机生成一个食物的位置 // 食物生成完成后判断食物生成的位置与现在的蛇的身体或者障碍物有冲突 // 食物的位置与蛇的身体或者障碍物冲突了&#xff0c;那么一直重新生成食物&#xff0c;直到生成不冲突…

GenAI开源公司汇总

主要分类如下&#xff1a; 1. 基础模型&#xff1a;这些是机器学习和AI的核心模型提供商&#xff0c;它们提供基础的算法和技术支持。 2. 模型部署与推断&#xff1a;提供云服务和计算资源&#xff0c;帮助用户部署和运行AI模型。 3. 开发者工具&#xff1a;支持AI/ML的开发…

【网络原理】TCP 协议中比较重要的一些特性(三)

目录 1、拥塞控制 2、延时应答 3、捎带应答 4、面向字节流 5、异常情况处理 5.1、其中一方出现了进程崩溃 5.2、其中一方出现关机&#xff08;正常流程的关机&#xff09; 5.3、其中一方出现断电&#xff08;直接拔电源&#xff0c;也是关机&#xff0c;更突然的关机&am…

拜占庭将军问题相关问题

1、拜占庭将军问题基本描述 问题 当我们讨论区块链共识时&#xff0c;为什么会讨论拜占庭将军问题&#xff1f; 区块链网络的本质是一个分布式系统&#xff0c;在存在恶意节点的情况下&#xff0c;希望 整个系统当中的善良节点能够对于重要的信息达成一致&#xff0c;这个机…

Python语言基础与应用-北京大学-陈斌-P40-39-基本扩展模块/上机练习:计时和文件处理-给算法计时-上机代码

Python语言基础与应用-北京大学-陈斌-P40-39-基本扩展模块/上机练习&#xff1a;计时和文件处理-给算法计时-上机代码 上机代码&#xff1a; # 基本扩展模块训练 给算法计时 def factorial(number): # 自定义一个计算阶乘的函数i 1result 1 # 变量 result 用来存储每个数的阶…

第十三篇:复习Java面向对象

文章目录 一、面向对象的概念二、类和对象1. 如何定义/使用类2. 定义类的补充注意事项 三、面向对象三大特征1. 封装2. 继承2.1 例子2.2 继承类型2.3 继承的特性2.4 继承中的关键字2.4.1 extend2.4.2 implements2.4.3 super/this2.4.4 final 3. 多态4. 抽象类4.1 抽象类4.2 抽象…

微信小程序关闭首页广告

由于之前微信小程序默认开启了首页广告位。导致很多老人误入广告页的内容&#xff0c;所以想着怎么屏蔽广告。好家伙&#xff0c;搜索一圈&#xff0c;要么是用户版本的屏蔽广告&#xff0c;或者是以下一个模棱两可的答案&#xff0c;要开发者设置一下什么参数的&#xff0c;如…