【类脑智能】脑网络通信模型分类及量化指标(附思维导图)

脑网络通信模型分类及量化指标(附思维导图)

参考论文:Brain network communication_ concepts, models and applications

概念

脑网络通信模型是一种使用图论和网络科学概念来描述和量化大脑结构中信息传递的模型。这种模型可以帮助研究人员理解神经信号在大脑内部如何传递,并探究不同脑区之间的通信策略。通过将生物神经信号抽象为网络通信动力学,这一理论框架提供了一种灵活方法来模拟相互连接的神经元间相互作用。脑网络通信模型也可以简化解释神经信号,抽象神经动力学的突发性和全系统特性,有助于捕捉大脑结构和功能之间的关系。总的来说,脑网络通信模型是一种基于网络科学和神经科学的框架,用于研究大脑结构和功能之间的信息传递机制。

1 分类

分为三种通信模型

  • 扩散过程(diffusion processes):信号沿着多个网络前端进行广播,或通过随机游走动力学传播。与路由协议不同的是,扩散过程不要求单个神经元掌握其周边以外的连接组知识,然而这种传播方式需要更多信号重传才能建立节点间的通信。因此,扩散模型具有较低的信息成本,高延迟和高能量成本的特点。
  • 路由协议(Routing protocols):信号是通过高效、选择性访问的少量路径传递的。信号在连接组中是沿单一、有选择的路径传输的。路由协议旨在找到由强大而可靠的少量连边组成的路径,从而高效、准确地传输信号。路由模型具有较高的信息成本、低延迟、低能量成本的特点。
  • 参数模型(parametric models)结合了路由和扩散的要素,根据模型参数的调整,提出倾向于通过有效路径或随机游走进行通信的混合策略。

脑网络通信模型.png
以上不同的通信模型的性能可通过一系列通信指标来量化,衡量标准根据其量化的神经通信特征(如信号成本或弹性)进行分组并用颜色编码。

  • AT,激活时间
  • Cinfo,信息成本
  • CMY,可交流性
  • Ctrans,传输成本(相当于 MFPT)
  • DE,扩散效率
  • EDP,边缘不连接路径
  • ER,效率比
  • k-SPL,k-最短路径长度
  • MFPT,平均首次通过时间
  • NE,导航效率
  • NPL,导航路径长度
  • PT,路径传递性
  • RE,资源效率
  • SI,搜索信息
  • SPE,最短路径效率
  • SPL,最短路径长度
  • SR,成功率

2 路由协议模型算法原理

  1. 最短路径路由是最常用的通信模型,它认为信号传递沿着连接两个区域的最有效路径进行。这意味着在选择通信路径时,会优先考虑最短的路径,以实现最佳信号延迟和节约能量消耗。最短路径路由的算法要求每个网络元素了解整个网络的拓扑结构,以找到最佳通信路径。这就意味着在确定最短路径时,需要有高信息成本的支持,因为每个节点都需要掌握整个网络的情况。
  2. 导航是一种去中心化的路由协议通信模型,不需要单个节点了解整个网络的拓扑知识。导航通过基于节点距离的局部知识来确定通信路径,从源节点到目标节点的路由是通过每个节点将信号转发给距离目标最近的邻节点来实现的。导航的贪婪路由策略可能会导致信号传递失败或陷入循环,但复杂网络具有很高的导航性,即成功传播信号并找到有效路径的能力。因此,导航作为另一种路由协议提供了一种与最短路径路由不同的通信策略。

路由协议.png

3 扩散模型之可传播性的算法原理

  1. 信号源开始向相邻区域发送信号,划定所有单位长度的路径,使信号传播到直接相连的区域。
  2. 接收到信号的区域将信号传播给所有相邻区域,划分出从信号源开始所有长度为2的可能路径。
  3. 所有可能的路径集合包括最短路径。
  4. 在广播过程中,信号从首次离开信号源到首次到达目标区域的延迟与最短路径路由的延迟相同。
  5. 路由过程遵循“细粒度、粗粒度、细粒度”的传播模式,即信号沿着较短路径传播,随着路径变长,低效路径的总体贡献会迅速减少;对节点间的可通信性进行加权和计算,以确保短路径比长路径更重要。
  6. 可传播性模型是一种在大脑网络中广泛应用的特定广播模型,其中信号同时沿网络的多个路径传播。
  7. 可传播性衡量了两个节点之间存在多少有效路径,体现了通信弹性和并行信号传播的整体能力。

广播.png

4 参数模型的算法原理

参数模型的行为由可调参数控制,可调参数沿一连续可能值定义。在这个范围两端,参数值通常近似于通过路由或扩散进行通信,而中间值则实现混合策略。对参数进行仔细调整后,就能产生复合策略,在延迟、信息和能量成本之间实现有利权衡,而这是路由和扩散,两种截然相反的策略,所无法实现的。

4.1 参数模型之线性阈值模型的算法原理及优缺点

线性阈值模型是描述节点扰动在网络中传播的模型,算法步骤如下:

  1. 模型假设:线性阈值模型假设网络中的每个节点在任何给定时间点处于“活跃”或“不活跃”状态,其中“活跃”状态表示节点已经接收并传播了扰动。
  2. 阈值参数设置:模型的阈值参数!∈[0,1]控制着级联的速度和规模,该参数决定了节点何时会处于“活跃”状态。如果节点的邻居中有大于阈值参数比例的节点处于“活跃”状态,那么该节点将被激活。
  3. 激活时间计算:激活时间是线性阈值模型的主要通信指标,用于量化网络中扰动传播时两个节点激活之间的延迟。
  4. 级联传播:局部节点扰动会触发通信级联,沿着多个网络节点传播,由节点的局部知识决定激活的方式。节点状态的传播基于邻居节点的状态。
  5. 参数调节:线性阈值模型中的可调参数可以调节参数值以产生不同模式的传播动力学,如延迟、信息和能量成本的权衡。
  6. 有偏随机游走:有偏随机游走是对线性阈值模型的一种参数化表述,通过增加参数“来引导节点利用全局拓扑信息进行通信,最终收敛到最短路径路由。

优点

  • 简单性:线性阈值模型具有简单、易于理解的结构,便于推演和分析。
  • 灵活性:模型的可调参数控制着传播速度和规模,允许对复杂传播动态进行模拟。
  • 通信效率:模型中的节点激活完全基于邻近节点状态,具有较低的信息成本,良好的信号效率和适中的能量成本。
  • 可控性:可以通过调整参数产生不同的传播策略,实现在延迟、信息和能量成本之间的权衡。

缺点

  • 信号完整性问题:线性阈值模型未考虑信号保真度的问题,即在重新传输过程中信号的完整性可能会受损。
  • 模型严谨性:目前关于线性阈值模型的测试和验证工作仍然很少,需要更多系统性的研究来确认其可靠性和适用性。
  • 复杂传播:对于复杂网络通信动力学的模拟可能存在限制,需要进一步改进模型以更好地捕捉实际通信过程中的复杂性。

4.2 参数模型之有偏游走模型的算法原理及优缺点

  1. 参数化表述:在有偏随机游走模型中,节点可利用的全局拓扑信息量由参数控制。
  2. 偏差因素:有偏随机游走使用额外因素来影响过渡概率,这些因素可以代表网络元素的内在属性,如个体在社交网络中的地位。
  3. 信号传输:信号从源节点出发,以与连接权重成正比的概率传输到随机选择的邻近节点,直到到达目标节点为止。这一过程被称为“无偏”随机游走。
  4. 通信动力学:有偏随机游走模型的参数值影响通信成本和行走路径,从无偏随机游走到最短路径路由等通信策略的连续谱提供灵活的探索方式。
  5. 路由模式:游走过程中可能出现“细粒度、粗粒度、细粒度”的传播模式,依赖于高聚类和互联枢纽核心的支持。
  6. 资源效率评估:资源效率可通过测量路径加权和和资源效率来评估,以量化路由和扩散之间的成本-效率权衡。

信号传播方式:扩散过程是一种分散的神经通信概念,信号沿着多个网络前端进行广播,或通过随机游走动力学进行传播,不要求单个节点掌握周围连接。
优点

  • 提高信息传递效率:有偏随机游走算法通过引入额外因素来影响过渡概率,使信号更有可能在通往所需目标的最短路径上传输,从而提高信息传递效率。
  • 灵活性强:通过调整参数"的值,有偏随机游走算法可以灵活地在无偏随机游走和最短路径路由之间进行权衡,实现信息成本和延迟之间的平衡。
  • 可实现复合策略:有偏随机游走算法通过调整参数值,可以实现既具有路由优势又具有扩散优势的复合策略,提高通信效率。
  • 相对低能量成本:导航策略在信息成本适中的情况下,具有低延迟和低能量成本的优势,可能比最短路径路由更符合生物学实际。

缺点:

  1. 高信息成本:有偏随机游走算法中,引入额外因素会增加信息传递的成本,使信息传播的前提是各区域知道其邻近区域与目标区域之间的距离,导致信息成本较高。
  2. 延迟较高:由于有偏随机游走算法会使信号路径明显长于最短路径且信号在多个连接点和轴突间再传递,导致通信延迟较高。
  3. 高能量消耗:通过增加信号副本来提高效率可能会导致更高的新陈代谢需求,即增加了能量消耗。

(10)最短路径集合(shortest path ensembles)的算法原理及优缺点

  1. 确定节点间最有效的前k条路径:最短路径集合模型考虑信号在两个节点之间的传输通过连接它们的k条最有效路径组成的集合进行。这意味着需要确定节点对之间的前k条最有效路径,以支持通信并减少传输延迟和成本。
  2. 考虑路径可达性和通信成本:随着k值的增大,路径集合变得更庞大且具有包容性,而确定的路径集合构建所需的信息成本也较低。同时,在选择最短路径时要考虑通信成本和延迟,以保证通信的高效率和节约资源。
  3. 路由选择性特点:最短路径集合模型突显了通信的选择性,即通信只通过最短路径进行,从而减少新陈代谢消耗。
  4. 考虑全局通信效率:最短路径集合模型下的信号传递需通过几种网络通信测量方法进行量化,以评估通信效率和网络属性。同时,需要考虑全局效率和分布式系统中的通信模式。

优点:

  • 最短路径集合模型突显了信号在整个网络中传输时并不仅限于使用单一最优路径的理念。
  • 通过考虑节点间的前k条最有效路径,最短路径集合模型允许信号传输具有选择性,提高了通信效率。
  • 在k值较大时,路径集合具有更广泛的覆盖性,构建所需的信息成本也较低,有利于通信的全面覆盖性和信息传递。
  • 最短路径集合模型在传输延迟低、平均信息成本和能量成本适中的情况下,为神经通信提供了一种有效的方式。

缺点:

  • 最短路径集合模型的构建需要在k的选择上进行权衡,过小的k值可能仍然依赖于全局拓扑知识,过大的k值则可能导致能量成本的增加。
  • 在最短路径集合中,路径的选择性意味着并非所有路径都被充分利用,存在一定的路径浪费现象。
  • 传统最短路径路由模型中的缺点在于其要求每个网络元素都了解整个网络的知识,因此存在极高的信息成本,难以在分散的神经系统中实施。
  • 最短路径集合模型虽有助于传输效率的提高,但在全局连接性不足的情况下可能导致通信的不完整性和信息传递的不稳定性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/463037.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

P1881 绳子对折

题目描述 FJ 有一个长度为 L(1≤L≤10,000)的绳子。这个绳子上有 N(1≤N≤100)个结,包括两个端点。FJ 想将绳子对折,并使较短一边的绳子上的结与较长一边绳子上的结完全重合,如图所示&#xff…

知名Web3投资基金a16z合伙人Jane Lippencott确认出席Hack.Summit() 2024区块链开发者大会

在区块链技术的风起云涌和Web3生态的蓬勃发展中,知名a16z Crypto的合伙人Jane Lippencott已确认出席即将于2024年4月9日至10日在香港数码港举行的Hack.Summit() 2024区块链开发者大会。作为亚洲首次举办的Hack.Summit(),此次大会将为全球区块链开发者及业…

本地用AIGC生成图像与视频

最近AI界最火的话题,当属Sora了。遗憾的是,Sora目前还没开源或提供模型下载,所以没法在本地跑起来。但是,业界有一些开源的图像与视频生成模型。虽然效果上还没那么惊艳,但还是值得我们体验与学习下的。 Stable Diffu…

深度学习-基于机器学习的情绪分析研究

概要 互联网技术的迅速发展使得社交平台逐渐成为热点事件中社会情感的枢纽。社会热点事件的舆论监管的其中一个重要环节就是能够准确分析民众的社会情绪。本文旨在探索可以基于文本大数据彻底分析民众对热点事件的社会情绪的模型和方法。先是从社交平台上借助文本大数据、对数据…

计算机网络 |内网穿透

其实内网穿透,也挺好玩的,如果在大学的时候,那个时候讲计算机网络的老师能横向延展,估计课也会更有趣不少,本来计算机网络这门课就是计算机课程中可玩性最搞的。 只能说,怪可惜的 回到正题,内网…

【Stable Diffusion】入门-04:不同模型分类+代表作品+常用下载网站+使用技巧

目录 1 模型简介2 模型文件构成和加载位置2.1 存储位置2.2 加载模型 3 模型下载渠道3.1 HuggingFace3.2 Civitai 4 模型分类4.1 二次元模型4.2 写实模型4.3 2.5D模型 1 模型简介 拿图片给模型训练的这个过程,通常被叫做“喂图”。模型学习的内容不仅包括对具体事物…

数据结构的概念大合集03(栈)

概念大合集03 1、栈1.1 栈的定义和特点1.2 栈的基础操作1.3 栈的顺序存储1.3.1 顺序栈1.3.2 栈空,栈满,进栈,出栈的基本思想1.3.3 共享栈1.3.3.1 共享栈的4要素 1.4 栈的链式存储1.4.1 链栈的实现1.4.2 链栈的4个要素 1、栈 1.1 栈的定义和特…

客户端:Vue3,服务端:Node,基于Socket.IO实现单聊的功能

目录 1.介绍 2.环境搭建 3.本功能实现的主要逻辑 4.客户端和服务端的主要代码 5.效果展示 6.socket.io的运作原理 1.介绍 本篇主要讲讲基于Socket.IO实现单聊功能的主要实现,包括了客户端和服务端Node。 在这个即时通讯无处不在的时代,实时聊天功能…

波奇学Linux:线程安全和自选锁和读写锁

STL不是线程安全的 单例模式的线程安全 自选锁:当线程申请锁失败时,不是挂起,而是一直申请 挂起等待锁 :当线程申请锁失败时,把锁挂起 一般临界区时间短的适合自选锁,长的适合挂起等待锁

如何在“Microsoft Visual Studio”中使用OpenCV编译应用程序

返回目录:OpenCV系列文章目录(持续更新中......) 前一篇:OpenCV4.9.0在windows系统下的安装 后一篇: 警告: 本教程可以包含过时的信息。 我在这里描述的所有内容都将适用于 OpenCV 的C\C接口。我首先假…

wsl ubuntu 安装的正确方式

目录 wsl ubuntu 安装的正确方式: 将wsl2设置为默认版本: 1、打开powershell 2、设置wsl的版本为2 ​编辑 3、更新wsl程序 4、强制关闭子系统 5、查看wsl支持的列表 6、安装指定版本的系统 wsl ubuntu 安装的正确方式: 此时&#xff0c…

Leetcode31. 删除无效的括号

心路历程: 一开始看到有点懵,后来发现有点像按照一定规则穷举所有可能情况,想到了排列组合问题,再结合问题长度不固定,无法用已知个for循环表示,从而想到了回溯。这个题相当于需要在一定规则下枚举。 按照…

刚刚离乳的幼猫该如何选择猫粮品牌?

亲爱的猫友们,当你家的幼猫刚刚离乳,准备踏入猫粮的世界时,如何选择一款合适的猫粮品牌确实是个让人头疼的问题。🐾 别担心,今天我就来为大家推荐一款值得信赖的幼猫粮——福派斯幼猫粮。 1️⃣ 考虑幼猫的营养需求 幼…

SQLiteC/C++接口详细介绍之sqlite3类(十三)

返回目录:SQLite—免费开源数据库系列文章目录 上一篇:SQLiteC/C接口详细介绍之sqlite3类(十二) 下一篇:SQLiteC/C接口详细介绍之sqlite3类(十四)(未发表) 40.sqlite3…

如何在webapp中于动发布一个应用

目录 第一步:在webapp文件夹内自定义文件夹第二步:生成一个文本,并把后缀改为 .html第三步:进入bin文件夹打开服务第四步:打开方式选择java第六步:输入你想输出的东西第七步:双击运行即可 第一步…

网络爬虫丨基于scrapy+mysql爬取博客信息

文章目录 写在前面实验描述实验框架实验需求 实验内容1.安装依赖库2.创建Scrapy项目3.配置系统设置4.配置管道文件5.连接数据库6.分析要爬取的内容7.编写爬虫文件 运行结果写在后面 写在前面 本期内容:基于scrapymysql爬取博客信息并保存到数据库中 实验需求 ana…

线程有哪几种状态(附图)以及线程状态的变化

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 线程的几种状态 线程的状态包括新建状态(New)、就绪状态(Runnable)、运行状态(Running)、阻塞状态(Blocked)、等待状态(Waiting)、超时等待状态…

1、FreeRTOS之任务管理

void vTask1( void *pvParameters ) { const char *pcTaskName "Task 1 is running\r\n"; volatile unsigned long ul; /* 和大多数任务一样,该任务处于一个死循环中。 */ for( ;; ) { /* Print out the name of this task. */ vPrintString( pcTaskNam…

腾讯云图形验证码的PHP示例

需要准备的 1.API密钥 SecretId 及 SecretKey 两部分, SecretId 用于标识 API 调用者的身份, SecretKey 用于加密签名字符串和服务器端验证签名字符串的密钥。 前往API密钥管理页面,即可进行获取 https://console.cloud.tencent.com/cam/ca…

切面条-蓝桥杯?-Lua 中文代码解题第1题

切面条-蓝桥杯?-Lua 中文代码解题第1题 一根高筋拉面,中间切一刀,可以得到2根面条。 如果先对折1次,中间切一刀,可以得到3根面条。 如果连续对折2次,中间切一刀,可以得到5根面条。 那么&#xf…