结构体联合体枚举和位段

文章目录

  • 结构体
      • 结构体类型的声明
        • 特殊的声明
      • 结构的自引用
      • 结构体变量的定义和初始化
      • 结构体`内存对齐`
      • 为什么要内存对齐
      • 结构体传参
      • 结构体实现位段(位段的填充&可移植性)
        • 位段
        • 位段的内存分配
        • 空间如何开辟
        • 位段的跨平台问题
        • 位段的应用
  • 枚举
      • 枚举类型的定义
      • 枚举的`优点`
      • 枚举的使用
  • 联合体
      • 联合类型的定义
      • 联合的特点
      • 联合大小的计算

c中有内置类型,也有自定义类型
自定义类型有:结构体 联合体 枚举
结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。
就像之前学过的数组一样:一组相同类型元素的集合

结构体

结构体类型的声明

struct是关键字
比如描述一个学生的信息
只是创建了结构体类型
分号不能丢

struct Stu//Stu结构体名字
{
char name[20];//结构体成员

}s1,s2;//s1,s2是全局变量

全局还是局部取决于是在主函数之内还是之外

特殊的声明

在声明结构的时候,可以不完全的声明。
匿名结构体类型

struct
{
char name[20];//结构体成员
}s1,s2

只能使用一次

//匿名结构体类型
struct
{
 int a;
 char b;
 float c;
}x;
struct
{
 int a;
 char b;
 float c;
}a[20], *p;
//在上面代码的基础上,下面的代码合法吗?
p = &x

会报警告,因为会认为两个结构体空间不一样
非法

结构的自引用

结构体不能包含同结构体类型
能包括同结构体类型指针
比如设置链表的节点

struct Node
{
int data;
struct Node* next;
};

链表就是用指针像链条一样把数据穿起来
数据结构会学

//代码3
typedef struct
{
 int data;
struct Node* next;
}Node;
//这样写代码,可行否?

typedef需要结构体存在才能重新定义
而Node还没创建,就已经用上了
先有鸡还是先有蛋的问题~

//`解决方案`:
typedef struct Node
{
 int data;
 struct Node* next;
}Node;

这时候Node=struct Node

结构体变量的定义和初始化

像上面的s1 s2 Node就是定义的变量
声明类型的同时定义变量
struct Stu p2; //定义结构体变量p2
初始化

struct Point
{
 int x;
 int y;
}p1; 声明类型的同时定义变量p1
struct Point p2; 定义结构体变量p2
初始化:定义变量的同时赋初值。
struct Point p3 = {x, y};
struct Stu        类型声明
{
 char name[15];名字
 int age;      年龄
};
struct Stu s = {"zhangsan", 20};初始化
struct Node
{
 int data;
 struct Point p;
 struct Node* next; 
}n1 = {10, {4,5}, NULL}; 结构体嵌套初始化
struct Node n2 = {20, {5, 6}, NULL};结构体嵌套初始化

打印

.操作符直接访问
->间接访问

#define  _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<stdio.h>
#include<string.h>
#if 0
struct Stu
{
	//结构体成员
	char name[18];
	int age;
	double score;

};
void set_stu(struct Stu* ps)//结构体指针变量
{
	strcpy(ps->name, "chenyanan");//ps->name和(*ps).name是一样的
	ps->age = 18;
	ps->score = 100.0;
}
void print_stu(struct Stu s)
{
	printf("%s %d %lf\n", s.name, s.age, s.score);//.操作符 结构对象.成员
}
int main()
{
	struct Stu s = { 0 };//类型+变量名即s是结构体的对象
	set_stu(&s);//形参和实参的形式不同,如果(s),实参未改变,应传递地址
	print_stu(s);
	return 0;
}

结构体内存对齐

在这里插入图片描述
在这里插入图片描述

计算偏移量
在这里插入图片描述
头文件include<stddef.h>

在这里插入图片描述

struct S3
{
	double d;
	char c;
	int i;
};

struct S2
{
	char c1;
	struct S3 s3;
	double d;
};
int main()
{
	printf("%d\n", offsetof(struct S2, c1));//0
	printf("%d\n", offsetof(struct S2, s3));//8
	printf("%d\n", offsetof(struct S2, d));//24
	printf("%d\n", sizeof(struct S2));//32
}

如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整
体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。
最大对齐数是8

为什么要内存对齐

  1. 平台原因(移植原因)
    不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
    2. 性能原因
    数据结构(尤其是栈)应该尽可能地在自然边界上对齐。
    原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访
    问。
    总体来说:
    结构体的内存对齐是拿空间来换取时间的做法。
    提高效率
    静态区栈区也是同样的储存规则

那在设计结构体的时候,我们既要满足对齐,又要节省空间
如何做到: 让占用空间小的成员尽量集中在一起

默认最大对齐数可以修改
#pragma pack(对齐数)
但不要乱改

结构体传参

struct S
{
 int data[1000];
 int num;
};
struct S s = {{1,2,3,4}, 1000};
//结构体传参
void print1(struct S s)
{
 printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{
 printf("%d\n", ps->num);
}
int main()
{
 print1(s);  //传结构体
 print2(&s); //传地址
 return 0;
}

首选print2
传值调用会压栈,开辟一个大空间接收数据
效率低,性能下降
传址空间小,地址4/8个字节
传结构体的地址

结构体实现位段(位段的填充&可移植性)

位段

位段的声明和结构是类似的,有两个不同:
1.位段的成员必须是 int、unsigned int 或signed int 。
2.位段的成员名后边有一个冒号和一个数字。

struct A
{
 int _a:2;//_a分配2个bite
 int _b:5;
 int _c:10;
 int _d:30;
};

位段用来节省空间

位段的内存分配
  1. 位段的成员可以是 int unsigned int signed int 或者是 char (属于整形家族)类型
  2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
    3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段
struct A
{
 int _a:2;//_a分配2个byte
 int _b:5;
 int _c:10;
 //15
 //开辟四个字节32个byte
 int _d:30;
};

47byte
int 4个字节 32byte
不够用再拿四个字节
会用完剩下的15个byte还是用新开辟的byte?

一个例子


struct S
{
 char a:3;char 8个byte剩下5
 char b:4;1
 char c:5;
 开辟一个字节,是会把1byte用掉在用新开辟的byte呢?
 还是会浪费掉呢?若浪费打印的是3个字节,没浪费打印2个字节
 char d:4;
};

int main()
{
printf("%d\n",sizeof(struct S)):
return 0;
}

在这里插入图片描述

不够字节后,接下来用的是新开辟的空间

空间如何开辟

大小端是超过一个字节,内存存放顺序的问题
在这里插入图片描述
这是在VS2022中的

位段的跨平台问题

在这里插入图片描述
总结

跟结构体相比,位段能达到同种效果,且能节省空间,但有跨平台问题,解决就是要能针对不同平台写不同的代码

位段的应用

在网络里传输数据的时候运用
在这里插入图片描述
基于网络协议写出来的网络编程是可以通信的
ip协议

枚举

枚举类型的定义

通过关键字enum来定义
基本语法

enum 枚举名{
成员1=1;
成员2=2;
...
成员n=值n;
};

枚举成员可以是任意标识符
值必须是整数
作用域在定义的文件内
若想要在其他文件内使用需要包含枚举的头文件
没有指定值,那默认第一个枚举成员的值为0
这里的enum没有存储到内存中,相当于是模板图纸,使用了才会有内存的空间分配

枚举的优点

我们可以使用 #define 定义常量,为什么非要使用枚举? 枚举的优点:

  1. 增加代码的可读性和可维护性
  2. 和#define定义的标识符比较枚举有类型检查,更加严谨
    宏在预处理阶段就把值进行了替换,在可执行文件中看到的也是替换之后的值,不便于观察
  3. 便于调试
  4. 使用方便,一次可以定义多个常量

枚举的使用

enum Color
{
red=1;
green=3;
orange=6;
};
int main()
{
//使用枚举类型变量
enum Color color;
//只能拿枚举常量给枚举变量赋值,才不会出现类型的差异。
color=red;
//不能color=1;
}

常用在需要设置特定顺序的常量值时 ,比如星期,月份,方向

联合体

联合类型的定义

包含一系列的成员,共用同一块内存空间->共用体

联合的特点

地址相同

#define  _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
union Un
{
	char a;
	int i;
	
}u;
int main()
{
	printf("%zd\n", sizeof(u));
	printf("%p\n", &u);
	printf("%p\n", &(u.i));
	printf("%p\n", &(u.a));
	return 0;
}

在这里插入图片描述

在同一块内存中存储不同类型
不能同时用,改变一个也会改变另一个

联合大小的计算

联合的大小至少是最大成员的大小。
当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍

union Un1
{
 char c[5];
 int i;
};
union Un2
{
 short c[7];
 int i;
};
//下面输出的结果是什么?
printf("%d\n", sizeof(union Un1));8
printf("%d\n", sizeof(union Un2));16

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/461925.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

鸿蒙Harmony应用开发—ArkTS声明式开发(容器组件:Column)

沿垂直方向布局的容器。 说明&#xff1a; 该组件从API Version 7开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 子组件 可以包含子组件。 接口 Column(value?: {space?: string | number}) 从API version 9开始&#xff0c;该接口…

vscode 生成树状图工具:project-tree

按下快捷键“CtrlShiftP”, 在弹框中输入 Project Tree&#xff0c;然后敲回车即会在根目录自动生成README.md&#xff08;如果之前没有的话&#xff09;。

pytorch 入门基础知识二(Pytorch 02)

一 微积分 1.1 导数和微分 微分就是求导&#xff1a; %matplotlib inline import numpy as np from matplotlib_inline import backend_inline from d2l import torch as d2l def f(x):return 3 * x ** 2 - 4 * x 定义&#xff1a; 然后求 f(x) 在 x 1 时的导数&#xff…

HarmonyOS NEXT应用开发—折叠屏音乐播放器方案

介绍 本示例介绍使用ArkUI中的容器组件FolderStack在折叠屏设备中实现音乐播放器场景。 效果图预览 使用说明 播放器预加载了歌曲&#xff0c;支持播放、暂停、重新播放&#xff0c;在折叠屏上&#xff0c;支持横屏悬停态下的组件自适应动态变更。 实现思路 采用MVVM模式进…

【Algorithms 4】算法(第4版)学习笔记 18 - 4.4 最短路径

文章目录 前言参考目录学习笔记0&#xff1a;引入介绍1&#xff1a;APIs1.1&#xff1a;API&#xff1a;加权有向边1.2&#xff1a;Java 实现&#xff1a;加权有向边1.3&#xff1a;API&#xff1a;加权有向图1.4&#xff1a;Java 实现&#xff1a;加权有向图1.5&#xff1a;AP…

Unity类银河恶魔城学习记录10-12 p100 Improve aliments - chill源代码

Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释&#xff0c;可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码 【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili CharacterStats.cs using System.Collections; using System.Collections…

docker容器镜像管理

目录 一、 Docker的基本组成 二、 容器和镜像的关系 2.1 面向对象角度 2.2 从镜像容器角度 三、镜像命令 3.1 查看当前已有镜像 3.2 查看已有的全部镜像 3.3 查看镜像ID 3.4 镜像删除 四、 容器命令 4.1 下载镜像 4.2 新建和启动容器 run 4.3 交互式 4.…

探讨大世界游戏的制作流程及技术——大场景制作技术概况篇

接上文&#xff0c;我们接下来了解一下大世界场景制作技术有哪些&#xff0c;本篇旨在给大家过一遍目前业界的做法&#xff0c;能让大家有一个宏观的知识蓝图。实际上&#xff0c;针对不同的游戏类型和美术风格&#xff0c;制作技术在细节上有着非常大的不同&#xff0c;业界目…

【UE5】持枪状态站立移动的动画混合空间

项目资源文末百度网盘自取 创建角色在持枪状态站立移动的动画混合空间 在BlendSpace文件夹中单击右键选择动画(Animation)中的混合空间(Blend Space) 选择SK_Female_Skeleton 命名为BS_RifleStand 打开 水平轴表示角色的方向&#xff0c;命名为Direction&#xff0c;方…

SD-WAN技术助力跨境电商网络搭建的解决方案

随着全球贸易的蓬勃发展&#xff0c;跨境电商成为了商业领域中的一个重要组成部分。然而&#xff0c;跨境电商面临着网络搭建和管理的复杂性&#xff0c;而SD-WAN技术的引入为解决这些问题提供了一种创新的方法。本文将深入探讨SD-WAN如何有效解决跨境电商行业的网络搭建问题。…

UE5.1 iClone8 正确导入角色骨骼与动作

使用iClone8插件Auto Setup 附录下载链接 里面有两个文件夹,使用Auto Setup C:\Program Files\Reallusion\Shared Plugins 在UE内新建Plugins,把插件复制进去 在工具栏出现这三个人物的图标就安装成功了 iClone选择角色,导入动作 选择导出FBX UE内直接导入 会出现是否启动插件…

同城预约上门服务APP小程序开发 打造快捷便利生活

随着移动互联网的快速发展&#xff0c;人们的生活方式正在发生深刻的变化。特别是在城市生活中&#xff0c;人们越来越依赖移动应用来解决日常生活中的各种问题。其中&#xff0c;同城预约上门服务APP正成为一种新型的生活服务平台&#xff0c;为人们提供了更加便利和快捷的服务…

RTC的Google拥塞控制算法 rmcat-gcc-02

摘要 本文档描述了使用时的两种拥塞控制方法万维网&#xff08;RTCWEB&#xff09;上的实时通信&#xff1b;一种算法是基于延迟策略&#xff0c;一种算法是基于丢包策略。 1.简介 拥塞控制是所有共享网络的应用程序的要求互联网资源 [RFC2914]。 实时媒体的拥塞控制对于许…

2023年总结:一个普通程序员如何挑选出价值千万的职业赛道

​​​​​​​ 引言 随着2023年的序幕缓缓落下&#xff0c;我终于在岁月的流转中捕捉到了一条隐秘而又公开的真理。它悄然告诉我们&#xff0c;成功并非单纯由勤劳的双手雕琢&#xff0c;一份耕耘未必有一份收获&#xff0c;而是在于我们如何在命运的十字路口作出关键选择。那…

Linux/secret

Enumeration nmap 第一次扫描发现系统对外开放了22&#xff0c;80和3000端口&#xff0c;端口详细信息如下 可以看到22端口对应的是ssh服务&#xff0c;80和3000都是http服务&#xff0c;80端口使用nginx&#xff0c;3000使用了Node.js TCP/80 可以先从80端口开始探索&…

滑动窗口和螺旋矩阵

209. 长度最小的子数组 题目 给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其总和大于等于 target 的长度最小的 连续 子数组 [numsl, numsl1, ..., numsr-1, numsr] &#xff0c;并返回其长度**。**如果不存在符合条件的子数组&#xff0c;返回…

R统计学3 - 数据分析入门问题41-60

往期R统计学文章: R统计学1 - 基础操作入门问题1-20 R统计学2 - 数据分析入门问题21-40 41. R 语言如何做双坐标图? # 创建模拟数据 year <- 2014:2024 gdp <- data.frame(year, GDP = sort(rnorm(11, 1000, 100))) ur <- data.frame(year, UR = rnorm(11, 5, 1…

微信小程序原生<map>地图实现标记多个位置以及map 组件 callout 自定义气泡

老规矩先上效果图: 1 、在pages文件夹下新建image文件夹用来存放标记的图片。 2、代码片段 也可以参考小程序文档:https://developers.weixin.qq.com/miniprogram/dev/component/map.html index.wxml代码 <mapid="map"style="width: 100%; height:100%;&…

外包就干了2个月,技术退步明显....

先说情况&#xff0c;大专毕业&#xff0c;18年通过校招进入湖南某软件公司&#xff0c;干了接近4年的功能测试&#xff0c;今年年初&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测试&#xf…

分布式机器学习

考虑到当今大数据时代生成的数据量&#xff0c;分布式机器学习是一项重要技术。 由此引出的问题是&#xff0c;我们应该选择哪个平台来帮助构建分布式机器学习环境&#xff1f; Apache Spark 是近年来非常流行的此类平台之一。 spark Apache Spark 是一个开源集群计算框架&am…