C++第五弹---类与对象(二)

个人主页: 熬夜学编程的小林

💗系列专栏: 【C语言详解】 【数据结构详解】【C++详解】

类与对象

1、类对象模型

1.1、如何计算类对象的大小

1.2、类对象的存储方式猜测

1.3、结构体内存对齐规则

2、this指针

2.1、this指针的引出

2.2、this指针的特性

2.3、C语言和C++实现Stack的对比

总结


1、类对象模型


1.1、如何计算类对象的大小

class A
{
public:
void PrintA()
{
cout<<_a<<endl;
}
private:
char _a;
};

 问题:类中既可以有成员变量,又可以有成员函数,那么一个类的对象中包含了什么?如何计算
一个类的大小?


1.2、类对象的存储方式猜测


1、对象中包含类的各个成员

缺陷:每个对象中成员变量是不同的,但是调用同一份函数,如果按照此种方式存储,当一
个类创建多个对象时,每个对象中都会保存一份代码,相同代码保存多次,浪费空间。那么
如何解决呢?
2、代码只保存一份,在对象中保存存放代码的地址
3、只保存成员变量,成员函数存放在公共的代码段

问题:对于上述三种存储方式,那计算机到底是按照那种方式来存储的?
我们再通过对下面的不同对象分别获取大小来分析看下

// 类中既有成员变量,又有成员函数
class A1 {
public:
void f1(){}
private:
int _a;//只计算成员变量的大小,为4字节
};
// 类中仅有成员函数
class A2 {
public:
void f2() {}
//只计算成员变量的大小,但是没有变量则算空类,空类规定为1字节
//为什么空类为1字节呢?因为实例化对象的标志是开辟的内存空间,竟然开辟了空间那么就不会是0,
//因此规定设为1字节
};
// 类中什么都没有---空类
class A3//空类为1字节
{};

 sizeof(A1) : __4____ sizeof(A2) : ___1___ sizeof(A3) : ___1___
结论:

一个类的大小,实际就是该类中”成员变量”之和,当然要注意内存对齐
注意空类的大小,空类比较特殊,编译器给了空类一个字节来唯一标识这个类的对象。


1.3、结构体内存对齐规则

1. 第一个成员在与结构体偏移量为0的地址处。
2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
注意:对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值。
VS中默认的对齐数为8
3. 结构体总大小为:最大对齐数(所有变量类型最大者与默认对齐参数取最小)的整数倍。
4. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。


【面试题】
1. 结构体怎么对齐? 为什么要进行内存对齐?

平台移植型好
不是所有的硬件平台都能访问任意地址上的数据;某些硬件平台只能只在某些地址访问某些特定类型的数据,否则抛出硬件异常,及遇到未对齐的边界直接就不进行读取数据了。

cpu处理效率高

从上图可以看出,对应两种存储方式,若CPU的读取粒度为4字节,

那么对于一个int 类型,若是按照内存对齐来存储,处理器只需要访存一次就可以读取完4个字节
若没有按照内存对其来读取,如上图所示,就需要访问内存两次才能读取出一个完整的int 类型变量具体过程为,第一次拿出 4个字节,丢弃掉第一个字节,第二次拿出4个字节,丢弃最后的三个字节,然后拼凑出一个完整的 int 类型的数据。


结论:结构体内存对齐是拿空间换取时间的做法。提高效率。

2. 如何让结构体按照指定的对齐参数进行对齐?能否按照3、4、5即任意字节对齐?

结构体的对齐是有规定的,不可任意对齐,但有一条指令可以修改默认对齐数(#pragma pack(对齐数))结构体进行规定对齐是跟底层的硬件有关系的,每种硬件对于数据的读取是不同的,为了提高硬件读取数据的效率,所以在代码层进行了结构体内存对齐。

比如:假设一台机器有32根地址线,即该机器每次能够读取32位的数据,也就是4byte的数据。例如将以下代码在该机器下进行读取:

 若内存对齐的方式进行读取

char _a变量总共读取一次(先读取四个字节,只取到第一个字节的数据即可),int _b总共读取一次。当读取完char _a 之后接着读取int _b 的时候恰好读取四个字节的内容,而这四个字节的内容恰好是int _b 的内容,刚好读取完成!

若不用内存对齐的方式进行存储:

char _a 读取一次,而 int _b 却要读取两次,读取一两个效率没啥影响,但是每种程序中读取的数据可能成千上万,效率就会有所降低! 

总结:

不能进行任意对齐,也不可不进行对齐,因为可能会降低效率! 

3. 什么是大小端?如何测试某台机器是大端还是小端,有没有遇到过要考虑大小端的场景。

大小端是数据的两种存储方式,因为市面上电脑硬件的制造不同,不同的硬件对于数据的处理方式不同,常用的市面上的硬件机器存储方式大致有两种:大端存储和小端存储!

概念:

大端存储:数据的低位字节放到内存的高地址处,高位字节放到内存的低地址处,是大端存储

小端存储:数据的低位字节放到内存的低地址处,高位字节放到内存的高地址处,是小端存储

测试一台机器是大端还是小端:

方式一:

利用联合体的特性,可以得出机器是大端还是小端。因为联合体共用同一块空间,所以我们给两个成员 一个char 和一个int  给int成员数字1,随后通过char成员去读取数据,访问成员的时候是从低地址到高地址开始访问的!若取到的char结果是1,是小端存储。若是0则是大端存储!

方式二:

创建一个int类型大小变量,将它的地址强转成char*类型,然后解引用得到的结果为1则为小端存储。否则为大端存储。

代码:

#include <iostream>
using namespace std;
 
union S
{
    char a;
    int b;
};
 
int main()
{
    S s1;
    //给整型变量赋值1
    s1.b = 1;
 
    //通过char进行访问
    cout << (int)s1.a << endl;
 
    return 0;
}

结论:

通过联合体共用同一块空间的特性或者整型存储来判断大小端!

2、this指针


2.1、this指针的引出


我们先来定义一个日期类 Date

class Date
{
public:
void Init(int year, int month, int day)
{
_year = year;
_month = month;
_day = day;
}
void Print()
{
cout <<_year<< "-" <<_month << "-"<< _day <<endl;
}
private:
//此处为声明
int _year; // 年
int _month; // 月
int _day; // 日
};
int main()
{
//Date::_year++;//此处为声明,因此不能修改值
Date d1, d2;//实例化对象
d1._year++;//此处已经定义过了,因此可以进行修改
d1.Init(2022,1,11);//初始化函数 可以使用缺省参数
d2.Init(2022, 1, 12);
d1.Print();
d2.Print();
return 0;
}

对于上述类,有这样的一个问题:
Date类中有 Init 与 Print 两个成员函数,函数体中没有关于不同对象的区分,那当d1调用 Init 函
数时,该函数是如何知道应该设置d1对象,而不是设置d2对象呢?

C++中通过引入this指针解决该问题,即:C++编译器给每个“非静态的成员函数“增加了一个隐藏的指针参数,让该指针指向当前对象(函数运行时调用该函数的对象),在函数体中所有“成员变量”的操作,都是通过该指针去访问。只不过所有的操作对用户是透明的,即用户不需要来传递,编译器自动完成。


2.2、this指针的特性

1. this指针的类型:类 类型* const,即成员函数中,不能给this指针赋值。
2. 只能在“成员函数”的内部使用。
3. this指针本质上是“成员函数”的形参,当对象调用成员函数时,将对象地址作为实参传递给
this形参。所以对象中不存储this指针。
4. this指针是“成员函数”第一个隐含的指针形参,一般情况由编译器通过ecx寄存器自动传
递,不需要用户传递。

代码:

#include <iostream>
using namespace std;
 
//定义一个日期类
class Date
{
public:
    //初始化
    void Init(int year = 1, int month = 1, int day = 1)
    {
        //编译器会自动将对象的地址传进来 用this指针形参接收
        //可在函数内部显式的写this指针进行访问
        this->_year = year;
        this->_month = month;
        this->_day = day;
    }
 
    //打印函数
    void Print()
    {
        //切记this指针是不能被修改的因为是用const修饰的参数
        // this = nullptr;  会报错error:不可修改的左值
 
        //编译器会自动将对象的地址传进来 用this指针形参接收
        //可在函数内部显式的写this指针进行访问
        cout << this->_year << " - ";
        cout << this->_month << " - ";
        cout << this->_day << endl;
    }
private:
    int _year;
    int _month;
    int _day;
};
 
int main()
{
    //类的实例化对象 
    Date d1;
 
    //调用Init方法,
    //调用的时候编译器会自动的将对象的地址传进去
    // 且用this指针接收地址
    d1.Init(2023, 4, 30);
 
    //打印
    //调用的时候编译器会自动的将对象的地址传进去
    // 且用this指针接收地址
    d1.Print();
 
    //但我们不能显式的去传递对象的地址
    //会报错 error:函数调用中的参数太多
    //因为编译器已经默认传了对象的地址了
    //我们在传递就会出现错误
    //d1.Print(&d1);
 
    return 0;
}


图片:

总结:

对象在调用成员函数的时候,编译器会自动将对象的地址传给this指针,用户不可在进行显式传对象地址。在成员函数内部可以显式的通过this指针去访问成员变量,this指针默认是用const修饰的不可在成员函数内部修改this指针的值。this指针本质是一个形参,是存储在栈区上的!

【面试题】
1. this指针存在哪里?

this指针本质是成员函数的形参,只是被编译器隐式的传递操作了。因为是函数的形参,是存在栈区上的,不存在对象中!
2. this指针可以为空吗?

this指针本质是用const修饰的,所以我们不能在成员函数内部将this指针置为空。而对象实例化之后必然是有地址的,空对象也是占用1个字节的空间。但是外部给this指针传一个空指针进来 this指针是可能为空的,但为空之后this指针是没有啥意义的,空指针是不能进行访问成员的,很危险!

即:this指针可能为nullptr

// 1.下面程序编译运行结果是? A、编译报错 B、运行崩溃 C、正常运行
class A
{
public:
void Print()
{
cout << "Print()" << endl;
}
private:
int _a;
};
int main()
{
A* p = nullptr;
p->Print();
return 0;
}

上面定义了一个A类 的指针p并给其赋予空值,通过指针去调用成员函数Print,此时在传的时候给this指针形参传过去的是p指针的值 也就是nullptr,而在成员函数内部并没有通过this指针去访问成员(进行解引用操作),this指针啥都没做,也没有用到this指针。即程序是可以正常运行的!

#include<iostream>
using namespace std;
// 1.下面程序编译运行结果是? A、编译报错 B、运行崩溃 C、正常运行
class A
{
public:
	void PrintA()
	{
		cout << _a << endl;
	}
private:
	int _a;
};
int main()
{
	A* p = nullptr;
	p->PrintA();
	return 0;
}

上面定义了一个A类 的指针p并给其赋予空值,通过指针去调用成员函数Print,此时在传的时候给this指针形参传过去的是p指针的值 也就是nullptr,而在成员函数内部通过this指针去访问成员_a(进行解引用操作),而此时的this指针是一个nullptr,对空指针解引用是不可行的。上述语法是没有问题的,编译时候是不会报错的,但访问是有问题的。即程序会出现运行崩溃!

2.3、C语言和C++实现Stack的对比


1. C语言实现

typedef int DataType;
typedef struct Stack
{
DataType* array;
int capacity;
int size;
}Stack;
void StackInit(Stack* ps)
{
   //初始化栈
}
void StackDestroy(Stack* ps)
{
  //销毁栈
}
void CheckCapacity(Stack* ps)
{
  //检查容量
}
void StackPush(Stack* ps, DataType data)
{
   //入栈
}
int StackEmpty(Stack* ps)
{
   //判断栈是否为空
}
void StackPop(Stack* ps)
{
  //出栈
}
DataType StackTop(Stack* ps)
{
  //获取栈顶数据
}
int StackSize(Stack* ps)
{
  //计算栈有效数据个数
}

可以看到,在用C语言实现时,Stack相关操作函数有以下共性:

每个函数的第一个参数都是Stack*。
函数中必须要对第一个参数检测,因为该参数可能会为NULL。
函数中都是通过Stack*参数操作栈的。
调用时必须传递Stack结构体变量的地址。
结构体中只能定义存放数据的结构,操作数据的方法不能放在结构体中,即数据和操作数据
的方式是分离开的,而且实现上相当复杂一点,涉及到大量指针操作,稍不注意可能就会出
错。


2. C++实现
 

typedef int DataType;
class Stack
{
public://公共权限
void Init()
{
   //初始化栈
}
void Push(DataType data)
{
   //入栈
}
void Pop()
{
  //出栈
}
void Destroy()
{
  //销毁栈
}
}
private://私有权限
void CheckCapacity()
{
  //检查容量
}
private://私有权限
//成员变量
DataType* _array;
int _capacity;
int _size;
};

C++中通过类可以将数据 以及 操作数据的方法进行完美结合,通过访问权限可以控制那些方法在
类外可以被调用
,即封装,在使用时就像使用自己的成员一样,更符合人类对一件事物的认知。
而且每个方法不需要传递Stack*的参数了,编译器编译之后该参数会自动还原,即C++中 Stack *
参数是编译器维护的,C语言中需用用户自己维护。

总结


本篇博客就结束啦,谢谢大家的观看,如果公主少年们有好的建议可以留言喔,谢谢大家啦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/461257.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Spring Cloud Alibab 入门搭建,包含Nacos中心,注册服务发现服务,Feign请求,GateWay网关,sentinel限流

源码在最后 一、安装Nacos注册中心 1.1查看Nacos官网&#xff0c;安装Nacos服务&#xff0c;下载源码或者安装包 1.2启动服务&#xff0c;默认端口为8848&#xff0c; 二、创建服务注册&发现 2.1使用脚手架&#xff0c;创建注册服务和发现服务项目&#xff0c;我用的版…

轻松玩转消息通信:SimpleAmqpClient 和 RabbitMQ 在C++中的终极指南

Rabbmq服务端 安装 这里我使用docker安装rabbitmq服务端,没有安装的就先去看其他的博客安装rabbitmq或者docker #拉取rabbitmq docker pull rabbitmq:management #运行rabbitmq,记得打开防火墙端口 docker run -d --hostname rabbitsrv --name rabbit -p 5672:5672 -p 15672…

【DL经典回顾】激活函数大汇总(十七)(Softmax2d附代码和详细公式)

激活函数大汇总&#xff08;十七&#xff09;&#xff08;Softmax2d附代码和详细公式&#xff09; 更多激活函数见激活函数大汇总列表 一、引言 欢迎来到我们深入探索神经网络核心组成部分——激活函数的系列博客。在人工智能的世界里&#xff0c;激活函数扮演着不可或缺的角…

机器硬件命令

一、查看机器核数 有以下几种方法 1、lscpu命令 lscpu命令可以显示关于CPU的信息&#xff0c;包括核数、线程数等。在终端中输入以下命令即可查看CPU核数&#xff1a;该命令会输出CPU每个物理插槽的核数。 lscpu | grep "Core(s) per socket" | awk {print $NF} …

zed2i录制前的准备

录制前需设置文件主要有两个 文件一&#xff1a;catkin_zed/src/zed-ros-wrapper-3.8.x/zed_wrapper/params/common.yaml # params/common.yaml # Common parameters to Stereolabs ZED and ZED mini cameras ---# Dynamic parameters cannot have a namespace brightness: …

力扣大厂热门面试算法题 36-38

36. 有效的数独&#xff0c;37. 解数独&#xff0c;38. 外观数列&#xff0c;每题做详细思路梳理&#xff0c;配套Python&Java双语代码&#xff0c; 2024.03.16 可通过leetcode所有测试用例。 目录 36. 有效的数独 解题思路 完整代码 Java Python 37. 解数独 解题思…

ElementUI Message 消息提示,多个显示被覆盖的问题

现象截图&#xff1a; 代码&#xff1a;主要是在this.$message 方法外层加上 setTimeout 方法 <script> export default {name: "HelloWorld",props: {msg: String,},methods: {showMessage() {for (let i 0; i < 10; i) {setTimeout(() > {this.$mess…

k8s-高可用etcd集群 26

reset掉k8s2&#xff0c;k8s3&#xff0c;k8s4节点 清理完网络插件后重启 快速创建一个k8s集群 修改初始化文件 添加master节点 备份 查看etcd配置 启动docker 将etcd二进制命令从容器拷贝到本机 备份 查看快照状态 删除集群资源 恢复 停掉所有的核心组件 从快照恢复 重启所有…

如何在CasaOS系统玩客云中安装内网穿透工具实现远程访问内网主机下载资源

文章目录 1. CasaOS系统介绍2. 内网穿透安装3. 创建远程连接公网地址4. 创建固定公网地址远程访问 2月底&#xff0c;玩客云APP正式停止运营&#xff0c;不再提供上传、云添加功能。3月初&#xff0c;有用户进行了测试&#xff0c;局域网内的各种服务还能继续使用&#xff0c;但…

加密算法 —— 有哪些容易入门且实用的算法?

一、背景 对于初学者来说&#xff0c;一些相对容易入门且实用的加密算法如下&#xff1a; 1. Caesar Cipher&#xff08;凯撒密码&#xff09;: - 凯撒密码是最简单的替换式加密算法之一&#xff0c;通过将字母按照固定位数向前或向后偏移来进行加密。尽管在现代安全场景下…

API接口数据集接口pytorch api接口获取数据

API是应用程序的开发接口&#xff0c;在开发程序的时候&#xff0c;我们有些功能可能不需要从到到位去研发&#xff0c;我们可以拿现有的开发出来的功能模块来使用&#xff0c;而这个功能模块&#xff0c;就叫做库(libary)。比如说&#xff1a;要实现数据传输的安全&#xff0c…

外贸干货|小白必须知道的六大开发信模板!

外贸人必看的开发信模板&#xff08;建议收藏学习&#xff09; 一封好的开发信是开发客户环节里至关重要的节点。 大体上需得简洁明了、开门见山、立意明确。内容上要注重客户需求和问题的解决。另外&#xff0c;高质量的开发信一定不是千篇一律的&#xff0c;而是“入乡随俗…

【进阶五】Python实现SDVRP(需求拆分)常见求解算法——遗传算法(GA)

基于python语言&#xff0c;采用经典遗传算法&#xff08;GA&#xff09;对 需求拆分车辆路径规划问题&#xff08;SDVRP&#xff09; 进行求解。 目录 往期优质资源1. 适用场景2. 代码调整3. 求解结果4. 代码片段参考 往期优质资源 经过一年多的创作&#xff0c;目前已经成熟的…

RISC-V 编译环境搭建:riscv-gnu-toolchain 和 riscv-tools

RISC-V 编译环境搭建&#xff1a;riscv-gnu-toolchain 和 riscv-tools 编译环境搭建以及说明 操作系统&#xff1a;什么系统都可以 虚拟机&#xff1a;VMmare Workstation Pro 17.50.x (版本不限) 编译环境&#xff1a;Ubuntu 18.04.5 CPU&#xff1a;i7-8750h(虚拟机分配4核…

[ C++ ] STL---string类的使用指南

目录 前言&#xff1a; string类简介 string类的常用接口 string类对象的构造函数 string类对象的赋值运算符重载 string类对象的容量操作 string类对象的访问与遍历 [ ] 下标遍历 迭代器遍历 普通迭代器iterator ​编辑 const迭代器const_iterator 反向迭代器rever…

远超预期,特效吹爆!《武庚纪》:建议漫改都按这个标准来!

作为《武庚纪》动画党&#xff0c;听闻要改编成真人电视剧时&#xff0c;最害怕的无非五毛钱特效&#xff0c;流水线仙侠&#xff0c;无脑古偶。但在看过《烈焰》&#xff08;原名&#xff1a;武庚纪&#xff09;之后&#xff0c;不得不感叹一句&#xff1a;“倒也不用这么还原…

SQL注入攻击原理与自动化检测技术的深度探究及其实战应用

SQL注入原理 SQL注入攻击的原理是基于攻击者能够控制应用程序与数据库之间的SQL查询。当应用程序将用户输入的数据直接嵌入到SQL查询中&#xff0c;而没有进行适当的验证或转义时&#xff0c;攻击者就可以通过输入精心构造的数据来操纵SQL查询的逻辑。 例如&#xff0c;假设有…

鸿蒙Harmony应用开发—ArkTS声明式开发(容器组件:ColumnSplit)

将子组件纵向布局&#xff0c;并在每个子组件之间插入一根横向的分割线。 说明&#xff1a; 该组件从API Version 7开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 子组件 可以包含子组件。 ColumnSplit通过分割线限制子组件的高度。初始…

配置vscode环境极简版(C/C++)(图文)

前言 众所周知&#xff0c;vscode是一个代码编辑器&#xff0c;不能直接编译运行我们敲的代码&#xff0c;必须提前配置好环境&#xff0c;而这也是劝退一众小白的一大重要因素&#xff0c;下面我想以一种提纲挈领的方式带大家走一遍从配置环境到运行实操代码的全过程。 安装…

从 VNCTF2024 的一道题学习QEMU Escape

说在前面 本文的草稿是边打边学边写出来的&#xff0c;文章思路会与一个“刚打完用户态 pwn 题就去打 QEMU Escape ”的人的思路相似&#xff0c;在分析结束以后我又在部分比较模糊的地方加入了一些补充&#xff0c;因此阅读起来可能会相对轻松。&#xff08;当然也不排除这是…