论文阅读——RingMo

RingMo: A Remote Sensing Foundation Model With Masked Image Modeling

与自然场景相比,RS图像存在以下困难。

1)分辨率和方位范围大:受遥感传感器的影响,图像具有多种空间分辨率。此外,与自然图像的实例通常由于重力而具有固定方向不同,遥感图像中的物体从鸟瞰角度来看具有很大的角度分布范围。因此,由于尺度和角度的多样性,同一物体在不同的RS图像中具有不同的特征。

2)许多密集和小物体:大部分自然图像包含少量物体。例如,ImageNet 数据集每个图像平均包含少于三个对象实例 [33]。如图1所示,遥感图像通常大而宽,覆盖数百公里。 RS图像中存在许多小物体,而且它们通常分布较密集,这在一定程度上影响了物体级解释的精度。

3)背景复杂:由于RS图像包含较大的场景,除了感兴趣的物体外,图像还包含大量的背景信息,导致图像的信噪比较低。物体的边界和背景模糊,干扰物体分类。而且遥感图像容易受到天气、光线、云、雾等外界因素的干扰,影响成像质量。

本文的贡献可以概括为四个方面。

1)我们提出RS领域第一个生成式自监督基础模型框架(RingMo)。该框架利用大量遥感数据来获取一般特征表示并提高各种遥感解释任务的准确性。

2)为了增强基础模型对遥感数据的处理能力,我们根据遥感图像的特性设计了一种自监督方法,改善了之前的掩模策略可能忽略复杂遥感场景中密集和小物体的情况。

3)在没有任何人类监督的情况下,我们收集了包含 200 万张图像的 RS 数据集,这些图像是从卫星和空中平台捕获的,涵盖六大洲的不同物体和场景。这种包含大量且多样化的遥感图像的数据集提高了基础模型对不同场景的适应性。

4) 在收集的数据集上使用 RingMo 训练方法推导基础模型后,我们在四个典型的 RS 任务上对其进行微调。实验表明,我们的方法在八个下游数据集上实现了 SOTA,并验证了我们的 RS 基础模型在各种应用上的有效性和泛化性。

模型:

PIMask Strategy:

如图 4 中左侧红色补丁所示,我们没有完全屏蔽图像补丁,而是随机保留屏蔽补丁中的一些像素。采用这种掩模策略,可以有效保留小目标的部分像素信息。就像图 4 中的蓝色补丁所示,我们增加了掩模补丁的数量以保持总掩模比率不变。此外,为了更好地利用这些保留像素,采用多层卷积来实现块嵌入。一些相关研究人员通过实验证明,在ViT中添加早期卷积层可以帮助模型更好地学习图像特征[67]。具体来说,在卷积过程中,我们让卷积核只在每个patch内部计算,这不能打破模型的mask约束。与传统的嵌入结果不同,多层卷积后的所有标记都具有特征信息,这进一步提高了编码器的学习效率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/457918.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

《1w实盘and大盘基金预测 day3》

上贴指数预测拉满,上证最低位置和最高位置预测的八九不离十,个人预测最高3062实际3060,最低3017实际3020 昨天的预测 3017-3031-3062 低开反抽,回落下杀 明天看是否能阳包阴,得看蓝筹、证券发力。(AI板块…

对OceanBase进行 sysbench 压测前,如何用 obdiag巡检

有一些用户想对 OceanBase 进行 sysbench 压测,并向我询问是否需要对数据库的各种参数进行调整。我想起有一个工具 obdiag ,具备对集群进行巡检的功能。因此,我正好借此机会试用一下这个工具。 obdiag 功能的比较丰富,详细情况可参…

【机器学习300问】37、什么是迁移学习?

一、什么是迁移学习? (1)它的出现是为了解决什么问题? 迁移学习是为了解决深度学习中由于数据不足导致的学习效果受限以及跨领域知识的有效利用等问题而发展起来的一种重要技术手段。 ① 缺少训练数据 在许多实际应用中&#xf…

手动创建线程池各个参数的意义?

今天我们学习线程池各个参数的含义,并重点掌握线程池中线程是在什么时机被创建和销毁的。 线程池的参数 首先,我们来看下线程池中各个参数的含义,如表所示线程池主要有 6 个参数,其中第 3 个参数由 keepAliveTime 时间单位组成。…

DM数据库安装(Linux)

Linux安装 操作系统CPU数据库CentOS7x86_64 架构dm8_20230418_x86_rh6_64 先把压缩包扔过去 新建 dmdba 用户 创建用户所在的组,命令如下: groupadd dinstall 创建用户,命令如下: useradd -g dinstall -m -d /home/dmdba -s /…

MQTT 的 QoS 等级:QoS 0、QoS 1、QoS 2

MQTT(Message Queuing Telemetry Transport)是一种轻量级的通信协议,在物联网和消息传递系统中广泛应用。MQTT 提供了三个不同的 QoS(Quality of Service)等级,用于确保消息的可靠性和传输效率。本文将详细…

java数据结构与算法刷题-----LeetCode47. 全排列 II

java数据结构与算法刷题目录(剑指Offer、LeetCode、ACM)-----主目录-----持续更新(进不去说明我没写完):https://blog.csdn.net/grd_java/article/details/123063846 文章目录 1. 暴力回溯2. 分区法回溯 此题为46题的衍生题,在46题…

Android14之报错:error:add its name to the whitelist(一百九十四)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…

Vscode 修改C++版本

1. 首先要检查GCC版本,有的gcc版本过低会导致C版本升级不成功 可以用cmd,用gcc --version命令查看gcc版本 我这里就是gcc版本较低,不支持c17 需要先升级gcc版本 gcc与c对应的版本,大家可以在这位大佬的博客中看,写…

json-server库的使用,实现数据模拟

项目目录 安装 npm i json-server -g 启动单个json服务,在cookbook目录下执行命令: json-server ./mock/a.json -p 9000 待实现

本地调试 Github Actions:维护纯净代码,减少调测记录 | 开源日报 No.200

nektos/act Stars: 47.6k License: MIT act 是一个可以在本地运行 GitHub Actions 的工具。 快速反馈:无需每次都提交/推送更改到 .github/workflows/ 文件(或嵌入式 GitHub actions),使用 act 可以在本地运行 actions&#xff…

【华为 ICT HCIA eNSP 习题汇总】——题目集16

1、下面哪一个最适合使用室内分布方式部署 WLAN? A、运动场 B、办公室 C、高校单排宿舍 D、广场 考点:无线局域网 解析:(C) 室内分布方式部署 WLAN 一般适用于需要大面积、高密度、高质量无线覆盖的场所,从…

<JavaEE> 数据链路层 -- 以太网协议、MTU限制、ARP协议

目录 以太网协议 什么是以太网? 以太网的帧格式 什么是MAC地址? MAC地址和IP地址的对比? MTU(最大传输单元)限制 什么是MTU限制? MTU对IP协议有什么影响? MTU对UDP协议有什么影响&…

Css提高——flex布局及其相关属性

目录: 1、传统布局与flex布局的区别 2、flex的布局原理 3、flex常见的父项属性 3.1、flex-direction :设置主轴的方向 3.2、justify-content 设置主轴上的子元素排列方式 3.3、flex-wrap 设置子元素是否换行 3.4、align-items 设置侧轴上的子元素排…

电阻器的等效电路与高频无感电阻的性能

电阻器的结构比较简单,但在高频情况下,不能简单地把电阻器看成只是一个电阻分量的理想元件。电阳器实际上是由许多电阻、电感和电容分量组成的复杂阻抗系统,电阻只是其中的一个主要成分。因此必须研究电阻器的直流等效电路、高频等效电路和集…

面试题系列一之-css画三角形(原理解析)

用html写一个三角形的图标算是一个比较简单的,但是工作中用的还是比较多的&#xff0c;面试也可能会问&#xff0c;但了解背后的原理才能熟练使用 我们首先写一个div,设置边框 <body><div class"border"></div> </body> <style> .bo…

HNU计算机系统·汇编进阶

知识回顾&#xff1a; 寻址&#xff1a; 其中&#xff0c;比例因子S&#xff0c;只能是1&#xff0c;2&#xff0c;4&#xff0c;8中的数&#xff0c;这是因为在LEA的独立电路中使用移位寄存器 上节课的补充&#xff1a; mov部分: mov value , %eax mov $value , %eax 第一条…

Python数据分析-5

1.时间序列 2.pandas重采样 重采样&#xff1a;指的是将时间序列从一个频率转化为另一个频率进行处理的过程&#xff0c;将高频率数据转化为低频率数据为降采样&#xff0c;低频率转 化为高频率为升采样。 统计出911数据中不同月份电话次数的变化情况&#xff1a…

Mysql---库表操作

文章目录 前言一、pandas是什么&#xff1f;二、使用步骤 1.引入库2.读入数据总结 一.Mysql数据库简介 MySQL是一种关系型数据库管理系统&#xff0c;是最流行的开源数据库之一。它是由瑞典MySQL AB公司开发的&#xff0c;后来被Sun Microsystems收购&#xff0c;之后又被Oracl…

vue iview 级联选择器遇到的坑

我们PC项目用到的前端技术栈是vue+iview,最近有个需求,要做个级联选择器,并且是懒加载动态加载后端返回的数据。效果如下: 如下图所示,在我们封装的公共组件form-box.vue里有我们级联选择器: 代码如下: <!--级联选择器--><template v-else-if="item.type…