9种分布式ID生成之美团(Leaf)实战

​​​​​

前几天写过一篇《一口气说出 9种 分布式ID生成方式,面试官有点懵了》,里边简单的介绍了九种分布式ID生成方式,但是对于像美团(Leaf)滴滴(Tinyid)百度(uid-generator)都是一笔带过。而通过读者留言发现,大家普遍对他们哥三更感兴趣,所以后边会结合实战,详细的对三种分布式ID生成器学习,今天先啃下美团(Leaf)

不了解分布式ID的同学,先行去看《一口气说出 9种 分布式ID生成方式,面试官有点懵了》温习一下基础知识,这里就不再赘述了

美团(Leaf)

Leaf是美团推出的一个分布式ID生成服务,名字取自德国哲学家、数学家莱布尼茨的一句话:“There are no two identical leaves in the world.”(“世界上没有两片相同的树叶”),取个名字都这么有寓意,美团程序员牛掰啊!

Leaf的优势:高可靠低延迟全局唯一等特点。

目前主流的分布式ID生成方式,大致都是基于数据库号段模式雪花算法(snowflake),而美团(Leaf)刚好同时兼具了这两种方式,可以根据不同业务场景灵活切换。

接下来结合实战,详细的介绍一下LeafLeaf-segment号段模式Leaf-snowflake模式

一、 Leaf-segment号段模式

Leaf-segment号段模式是对直接用数据库自增ID充当分布式ID的一种优化,减少对数据库的频率操作。相当于从数据库批量的获取自增ID,每次从数据库取出一个号段范围,例如 (1,1000] 代表1000个ID,业务服务将号段在本地生成1~1000的自增ID并加载到内存.。

大致的流程入下图所示:
在这里插入图片描述
号段耗尽之后再去数据库获取新的号段,可以大大的减轻数据库的压力。对max_id字段做一次update操作,update max_id= max_id + step,update成功则说明新号段获取成功,新的号段范围是(max_id ,max_id +step]。

由于依赖数据库,我们先设计一下表结构:

CREATE TABLE `leaf_alloc` (
  `biz_tag` varchar(128) NOT NULL DEFAULT '' COMMENT '业务key',
  `max_id` bigint(20) NOT NULL DEFAULT '1' COMMENT '当前已经分配了的最大id',
  `step` int(11) NOT NULL COMMENT '初始步长,也是动态调整的最小步长',
  `description` varchar(256) DEFAULT NULL COMMENT '业务key的描述',
  `update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '数据库维护的更新时间',
  PRIMARY KEY (`biz_tag`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

预先插入一条测试的业务数据

INSERT INTO `leaf_alloc` (`biz_tag`, `max_id`, `step`, `description`, `update_time`) VALUES ('leaf-segment-test', '0', '10', '测试', '2020-02-28 10:41:03');
  • 1
  • biz_tag:针对不同业务需求,用biz_tag字段来隔离,如果以后需要扩容时,只需对biz_tag分库分表即可

  • max_id:当前业务号段的最大值,用于计算下一个号段

  • step:步长,也就是每次获取ID的数量

  • description:对于业务的描述,没啥好说的

将Leaf项目下载到本地:https://github.com/Meituan-Dianping/Leaf

修改一下项目中的leaf.properties文件,添加数据库配置

leaf.name=com.sankuai.leaf.opensource.test
leaf.segment.enable=true
leaf.jdbc.url=jdbc:mysql://127.0.0.1:3306/xin-master?useUnicode=true&characterEncoding=utf8
leaf.jdbc.username=junkang
leaf.jdbc.password=junkang

leaf.snowflake.enable=false

注意leaf.snowflake.enable 与 leaf.segment.enable 是无法同时开启的,否则项目将无法启动。

配置相当的简单,直接启动LeafServerApplication后就OK了,接下来测试一下,leaf是基于Http请求的发号服务, LeafController 中只有两个方法,一个号段接口,一个snowflake接口,key就是数据库中预先插入的业务biz_tag


@RestController
public class LeafController {
    private Logger logger = LoggerFactory.getLogger(LeafController.class);

    @Autowired
    private SegmentService segmentService;
    @Autowired
    private SnowflakeService snowflakeService;

    /**
     * 号段模式
     * @param key
     * @return
     */
    @RequestMapping(value = "/api/segment/get/{key}")
    public String getSegmentId(@PathVariable("key") String key) {
        return get(key, segmentService.getId(key));
    }

    /**
     * 雪花算法模式
     * @param key
     * @return
     */
    @RequestMapping(value = "/api/snowflake/get/{key}")
    public String getSnowflakeId(@PathVariable("key") String key) {
        return get(key, snowflakeService.getId(key));
    }

    private String get(@PathVariable("key") String key, Result id) {
        Result result;
        if (key == null || key.isEmpty()) {
            throw new NoKeyException();
        }
        result = id;
        if (result.getStatus().equals(Status.EXCEPTION)) {
            throw new LeafServerException(result.toString());
        }
        return String.valueOf(result.getId());
    }
}

访问:http://127.0.0.1:8080/api/segment/get/leaf-segment-test,结果正常返回,感觉没毛病,但当查了一下数据库表中数据时发现了一个问题。
在这里插入图片描述
在这里插入图片描述
通常在用号段模式的时候,取号段的时机是在前一个号段消耗完的时候进行的,可刚刚才取了一个ID,数据库中却已经更新了max_id,也就是说leaf已经多获取了一个号段,这是什么鬼操作?
在这里插入图片描述

Leaf为啥要这么设计呢?

Leaf 希望能在DB中取号段的过程中做到无阻塞!

当号段耗尽时再去DB中取下一个号段,如果此时网络发生抖动,或者DB发生慢查询,业务系统拿不到号段,就会导致整个系统的响应时间变慢,对流量巨大的业务,这是不可容忍的。

所以Leaf在当前号段消费到某个点时,就异步的把下一个号段加载到内存中。而不需要等到号段用尽的时候才去更新号段。这样做很大程度上的降低了系统的风险。

那么某个点到底是什么时候呢?

这里做了一个实验,号段设置长度为step=10max_id=1
在这里插入图片描述
当我拿第一个ID时,看到号段增加了,1/10
在这里插入图片描述
在这里插入图片描述
当我拿第三个Id时,看到号段又增加了,3/10
在这里插入图片描述
在这里插入图片描述
Leaf采用双buffer的方式,它的服务内部有两个号段缓存区segment。当前号段已消耗10%时,还没能拿到下一个号段,则会另启一个更新线程去更新下一个号段。

简而言之就是Leaf保证了总是会多缓存两个号段,即便哪一时刻数据库挂了,也会保证发号服务可以正常工作一段时间。

在这里插入图片描述
通常推荐号段(segment)长度设置为服务高峰期发号QPS的600倍(10分钟),这样即使DB宕机,Leaf仍能持续发号10-20分钟不受影响。

优点:

  • Leaf服务可以很方便的线性扩展,性能完全能够支撑大多数业务场景。
  • 容灾性高:Leaf服务内部有号段缓存,即使DB宕机,短时间内Leaf仍能正常对外提供服务。

缺点:

  • ID号码不够随机,能够泄露发号数量的信息,不太安全。
  • DB宕机会造成整个系统不可用(用到数据库的都有可能)。
二、Leaf-snowflake

Leaf-snowflake基本上就是沿用了snowflake的设计,ID组成结构:正数位(占1比特)+ 时间戳(占41比特)+ 机器ID(占5比特)+ 机房ID(占5比特)+ 自增值(占12比特),总共64比特组成的一个Long类型。

Leaf-snowflake不同于原始snowflake算法地方,主要是在workId的生成上,Leaf-snowflake依靠Zookeeper生成workId,也就是上边的机器ID(占5比特)+ 机房ID(占5比特)。Leaf中workId是基于ZooKeeper的顺序Id来生成的,每个应用在使用Leaf-snowflake时,启动时都会都在Zookeeper中生成一个顺序Id,相当于一台机器对应一个顺序节点,也就是一个workId。

在这里插入图片描述
Leaf-snowflake启动服务的过程大致如下:

  • 启动Leaf-snowflake服务,连接Zookeeper,在leaf_forever父节点下检查自己是否已经注册过(是否有该顺序子节点)。
  • 如果有注册过直接取回自己的workerID(zk顺序节点生成的int类型ID号),启动服务。
  • 如果没有注册过,就在该父节点下面创建一个持久顺序节点,创建成功后取回顺序号当做自己的workerID号,启动服务。

Leaf-snowflake对Zookeeper是一种弱依赖关系,除了每次会去ZK拿数据以外,也会在本机文件系统上缓存一个workerID文件。一旦ZooKeeper出现问题,恰好机器出现故障需重启时,依然能够保证服务正常启动。

启动Leaf-snowflake模式也比较简单,起动本地ZooKeeper,修改一下项目中的leaf.properties文件,关闭leaf.segment模式,启用leaf.snowflake模式即可。

leaf.segment.enable=false
#leaf.jdbc.url=jdbc:mysql://127.0.0.1:3306/xin-master?useUnicode=true&characterEncoding=utf8
#leaf.jdbc.username=junkang
#leaf.jdbc.password=junkang

leaf.snowflake.enable=true
leaf.snowflake.zk.address=127.0.0.1
leaf.snowflake.port=2181
    /**
     * 雪花算法模式
     * @param key
     * @return
     */
    @RequestMapping(value = "/api/snowflake/get/{key}")
    public String getSnowflakeId(@PathVariable("key") String key) {
        return get(key, snowflakeService.getId(key));
    }

测试一下,访问:http://127.0.0.1:8080/api/snowflake/get/leaf-segment-test
在这里插入图片描述
优点:

  • ID号码是趋势递增的8byte的64位数字,满足上述数据库存储的主键要求。

缺点:

  • 依赖ZooKeeper,存在服务不可用风险(实在不知道有啥缺点了)
三、Leaf监控

请求地址:http://127.0.0.1:8080/cache

针对服务自身的监控,Leaf提供了Web层的内存数据映射界面,可以实时看到所有号段的下发状态。比如每个号段双buffer的使用情况,当前ID下发到了哪个位置等信息都可以在Web界面上查看。

在这里插入图片描述

总结

对于Leaf具体使用哪种模式,还是根据具体的业务场景使用,本文并没有对Leaf源码做过多的分析,因为Leaf 代码量简洁很好阅读。后续还会把其他几种分布式ID生成器,依次结合实战介绍给大家,欢迎大家关注。


今天就说这么多,如果本文对您有一点帮助,希望能得到您一个点赞👍哦

您的认可才是我写作的动力!

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/457366.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

多维时序 | MATLAB实现BiTCN-selfAttention自注意力机制结合双向时间卷积神经网络多变量时间序列预测

多维时序 | MATLAB实现BiTCN-selfAttention自注意力机制结合双向时间卷积神经网络多变量时间序列预测 目录 多维时序 | MATLAB实现BiTCN-selfAttention自注意力机制结合双向时间卷积神经网络多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.M…

三个表联合查询的场景分析-场景1:a表关联了b表和c表

本场景对应情景如下: 三个数据表,一个表的两个字段分别关联了另外两个表各自的id数据,可能包含多个id(两个1对多关联)。 目录 数据表准备 需求1、查询c表的列表数据,要求获得关联的b表中的name&#xf…

OceanBase中binlog service 功能的试用

OBLogProxy简介 OBLogProxy即OceanBase的增量日志代理服务,它可与OceanBase建立连接并读取增量日志,从而为下游服务提供了变更数据捕获(CDC)的功能。 关于OBLogProxy的详尽介绍与具体的安装指引,您可以参考这篇官方OB…

【深度学习笔记】9_8 区域卷积神经网络(R-CNN)系列

注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图 9.8 区域卷积神经网络(R-CNN)系列 区域卷积神经网络(region-based CNN或regions with CNN feature…

Unreal发布Android在刘海屏手机上不能全屏显示问题

Unreal 4.27发布Android在刘海屏手机上不能全屏显示问题 Android设置全屏刘海屏全屏设置4.27设置刘海屏在部分手机不能显示问题 Android设置全屏 AndroidManifest.xml文件配置 ...<activity android:name"com.epicgames.ue4.GameActivity" android:label"st…

Spring基础——使用注解开发SpringMVC

目录 配置SpringMVC的初始化信息配置ServletWebApplicationContext配置RootWebApplicationContext配置ServletContext 创建Controller控制器配置Controller响应路径接收用户传递参数接收JSON数据接收简单类型对象封装参数 接收数组类型 Restful 文章源码仓库&#xff1a;Spring…

bootstrap企业网站前端模板

介绍 企业网站前端模板 软件架构 前端所用技术html/css/js/jquery 前端框架bootstrap 安装教程 浏览器本地路径访问发布到服务器比如&#xff08;tomcat/nginx等&#xff09;云服务器/虚拟机 网站效果图 网站预览 点击预览 源码地址 https://gitee.com/taisan/company…

【镜像转存】利用交互式学习平台killercoda转存K8S镜像至Docker私人仓库

文章目录 1. 镜像转存需求2. 注册并登陆 killercoda URL3. 打开playground4. 在线拉取K8S镜像并打上标签5. 推送K8S镜像到Docker私有仓库6. 登陆Docker私有仓库查看 1. 镜像转存需求 因K8S镜像在不开代理的情况下&#xff0c;拉取超时、下载缓慢&#xff0c;导致镜像拉取不下来…

【分布式websocket】群聊中的各种难点以及解决推拉结合【第16期】

前言 群聊中未读消息如何设计&#xff0c;以及是推消息还是拉去消息如何选择是需要讨论的。推送消息是推送全量消息还是推送信号消息让客户端再去拉取。其中方案如何选型会比较纠结。 首先基本的推拉结合思路是在线用户推送消息。用户离线的话上线去拉取消息。这是简单的推拉结…

WPF —— TabControl、StackPanel 控件详解

1 TabControl简介 表示包含多个项的控件&#xff0c;这些项共享屏幕上的同一空间。 TabControl有助于最大程度地减少屏幕空间使用量&#xff0c;同时允许应用程序公开大量数据。 TabControl包含共享同一屏幕空间的多个 TabItem 对象。一次只能看到 TabControl 中的一个 Ta…

交换机/路由器的存储介质-华三

交换机/路由器的存储介质-华三 本文主要介绍网络设备的存储介质组成。 ROM(read-only memory&#xff0c;只读存储器) 用于存储 BootROM程序。BootROM程序是一个微缩的引导程序&#xff0c;主要任务是查找应用程序文件并引导到操作系统&#xff0c;在应用程序文件或配置文件出…

AJAX 01 AJAX 概念和 axios 使用

2.27 AJAX 学习 AJAX 1 入门01 AJAX 概念和 axios 使用axios 使用案例 02 认识 URLURL组成 03 URL 查询参数axios&#xff0d;查询参数案例 &#xff1a;地区查询 04 常用请求方法和数据提交axios 请求配置axios 错误处理 05 HTTP协议-报文① 请求报文作用&#xff1a;错误排查…

uniapp微信小程序_自定义交费逻辑编写

一、首先看最终效果 先说下整体逻辑,选中状态为淡紫色,点击哪个金额,充值页面上就显示多少金额 二、代码 <view class"addMoney"><view class"addMoneyTittle">充值金额</view><view class"selfaddmoney" :class"{…

力扣日记3.14-【贪心算法篇】376. 摆动序列

力扣日记&#xff1a;【贪心算法篇】376. 摆动序列 日期&#xff1a;2024.3.14 参考&#xff1a;代码随想录、力扣 376. 摆动序列 题目描述 难度&#xff1a;中等 如果连续数字之间的差严格地在正数和负数之间交替&#xff0c;则数字序列称为 摆动序列 。第一个差&#xff08;…

【总结】服务器无法连接外网,设置http代理解决

问题 某天想要在服务器上下载编译github上某开源项目&#xff0c;结果发现访问不了外网。 于是找运维&#xff0c;运维给了个http代理服务器地址。简单操作后&#xff0c;就可以访问外网了。 解决 在需要访问外网的机器上&#xff0c;执行以下命令&#xff1a;http_proxyhtt…

rust学习(简单链表)

编写一个简单链表&#xff0c;主要遇到的问题就是next指针&#xff08;按照C的写法&#xff09;的数据如何定义。按照网上的建议&#xff0c;一般定义如下&#xff1a; struct Node {pub value:u32,pub next:Option<Rc<RefCell<Node>>>, //1 }1.用Option主要…

GoLang:云原生时代致力于构建高性能服务器的后端语言

Go语言的介绍 概念 Golang&#xff08;也被称为Go&#xff09;是一种编程语言&#xff0c;由Google于2007年开始设计和开发&#xff0c;并于2009年首次公开发布。Golang是一种静态类型、编译型的语言&#xff0c;旨在提供高效和可靠的软件开发体验。它具有简洁的语法、高效的编…

外卖小程序-购物车模块表结构设计和后端代码

表结构设计 添加购物车代码 Service public class ShoppingCartServiceImpl implements ShoppingCartService {Autowiredprivate ShoppingCartMapper shoppingCartMapper;Autowiredprivate DishMapper dishMapper;Autowiredprivate SetmealMapper setmealMapper;/*** 添加购物…

在浏览器的控制台定义变量,清除后还是报错变量已声明

报错&#xff1a;Uncaught SyntaxError: Identifier words has already been declared 在浏览器的控制台&#xff08;Console&#xff09;中定义的变量是全局变量&#xff0c;它们会保留在当前的浏览器窗口或标签页的生命周期中。即使你清除了控制台的内容&#xff08;例如通过…

[云原生] Prometheus自动服务发现部署

一、部署服务发现 1.1 基于文件的服务发现 基于文件的服务发现是仅仅略优于静态配置的服务发现方式&#xff0c;它不依赖于任何平台或第三方服务&#xff0c;因而也是最为简单和通用的实现方式。 Prometheus Server 会定期从文件中加载 Target 信息&#xff0c;文件可使用 YAM…