指针进阶(三)
指针习题组:
01:
int main()
{
int a[5] = { 1, 2, 3, 4, 5 };
int *ptr = (int *)(&a + 1);
printf( "%d,%d", *(a + 1), *(ptr - 1));
return 0;
}
运行结果:
原因:这里a是数组名,存放的是数组的首地址,&a是整个数组的地址,+1操作跳过了整个数组,所以ptr的指向如图所示,ptr被强制类型转换之前的类型是:
int(*)[5];
是数组指针,现在被强制转化成了int*
类型,所以进行加减操作时,跳过的是整型的大小了,解引用操作也是向后访问一个整型的大小。第5行中的a是数组首元素的地址,也就是int*类型的地址,+1操作会跳过一个整型。
指向如图所示,再解引用操作,最终的得到了2和5.
02:
这里告知结构体的大小是20个字节
struct Test
{
int Num;
char *pcName;
short sDate;
char cha[2];
short sBa[4];
}*p;
//假设p 的值为0x100000。 如下表表达式的值分别为多少?
//已知,结构体Test类型的变量大小是20个字节
int main()
{
printf("%p\n", p + 0x1);//0x100014
printf("%p\n", (unsigned long)p + 0x1);//0x100001
printf("%p\n", (unsigned int*)p + 0x1);//0x100004
return 0;
}
原因:p是结构体指针变量,由于结构体的大小是20个字节,所以对p进行加减操作时,会跳过20个字节。代码第14行,就会加上20,转化成16进制就是加上14。当p被转化成
unsigned long
类型时,进行加减操作时会发生代数上的简单的加减,所以代码第15行只是单纯的加上1。当p被转化为unsigned in*
类型时,进行加减操作时跳过4个字节,所以代码第16行的运行结果就是0x100004。
03:
int main()
{
int a[4] = { 1, 2, 3, 4 };
int *ptr1 = (int *)(&a + 1);
int *ptr2 = (int *)((int)a + 1);
printf( "%x,%x", ptr1[-1], *ptr2);//4 33554432
return 0;
}
此时的ptr1和ptr2都是int*类型的变量,访问时会访问一个整型的大小。
04:
#include <stdio.h>
int main()
{
int a[3][2] = { (0, 1), (2, 3), (4, 5) };
int *p;
p = a[0];
printf( "%d", p[0]);
return 0;
}
原因:注意初始化数组时,括号里的是逗号表达式,所以数组中存储的是:135000 ,p指针变量等同于第一个一维数组的数组名,p[0]等同于a[0][0],结果为1.
05:
int main()
{
int a[5][5];
int(*p)[4];
p = a;
printf( "%p,%d\n", &p[4][2] - &a[4][2], &p[4][2] - &a[4][2]);
return 0;
}
运行结果:
原因分析:由于p的类型是;
int(*)[4];
所以p在进行加减操作时,跳过的是4个元素,而a的类型是int(*)[5];
所以a进行加减操作时,跳过的是5个元素,由图可知,p[4][2]和a[4][2]之间相差了4个元素,由于p处于低地址,所以得到的答案是-4,又因为地址就是内存中实际存储的补码,所以-4以%p打印出来时,-4将会被看作无符号数进行打印,因为在内存中地址是没有正负之分的。所以打印结果就是FFFFFFFFFFFFFFFC
。
06:
int main()
{
int aa[2][5] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int *ptr1 = (int *)(&aa + 1);
int *ptr2 = (int *)(*(aa + 1));
printf( "%d,%d", *(ptr1 - 1), *(ptr2 - 1));
return 0;
}
运行结果:
原因分析:ptr1和ptr2的指向如图所示,但由于他们都是int*类型的指针,所以进行加减操作时,会跳过一个整型,打印结果就是5和10了。
07:
#include <stdio.h>
int main()
{
char *a[] = {"work","at","alibaba"};
char**pa = a;
pa++;
printf("%s\n", *pa);
return 0;
}
运行结果:
原因分析:pa的指向如图所示,pa中存储的是数组首元素的地址,这里的a数组中存放的三个字符串的首字符的地址,所以每个元素都是char*类型的。pa的类型是char**类型的,所以pa在进行加减操作时会跳过一个char*类型。pa++之后就指向的数组中的第二个元素,*pa就是第二个字符串首元素的地址。所以打印出了 at。
08:
int main()
{
char *c[] = {"ENTER","NEW","POINT","FIRST"};
char**cp[] = {c+3,c+2,c+1,c};
char***cpp = cp;
printf("%s\n", **++cpp);
printf("%s\n", *--*++cpp+3);
printf("%s\n", *cpp[-2]+3);
printf("%s\n", cpp[-1][-1]+1);
return 0;
}
运行结果:
原因分析:
- 在printf语句之前,数据关系如图所示。++cpp之后,cpp就指向cp中的c+2了,
**++cpp
就拿到了 POINT 这个字符串的首字符的地址,打印出POINT。- 接着,cpp再次进行++操作,此时cpp则指向了cp中的c+1了,
*++cpp
的类型是char**类型,进行–操作时,会向后跳过一个char*类型的数据,指向ENTER这个字符串,在进行解引用操作,此时类型就成了char*类型,再进行+3操作,就跳过了三个字符,此时则指向了ENTER这个字符串中的第三个字符,结果打印出ER。cpp[-2]
又指向的cp中的c+3了。*cpp[2]
的类型是char*类型,再进行+3操作会跳过三个字符,此时就指向了FIRST这个字符串中的第三个字符,打印出ST。cpp[-1]
指向的是cp中的c+2,cpp[-1][-1]
的类型为char* 类型,指向的是c中的NEW这个字符串,+1操作,指向NEW中的第二个字符,打印出EW。
这道题特别要注意的点是,cpp在前两次的++过程中,相应的cpp的指向是会被改变的,但是后面cpp[-1]这种操作,并不会改变cpp的指向。
完结
本章的内容就到这里啦,若有不足,欢迎评论区指正,下期见!