【OpenGL手册13】 光照贴图

目录

  • 一、说明
  • 二、漫反射贴图
  • 三、镜面光贴图
  • 四、采样镜面光贴图
  • 练习

一、说明

   在上一节中,我们讨论了让每个物体都拥有自己独特的材质从而对光照做出不同的反应的方法。这样子能够很容易在一个光照的场景中给每个物体一个独特的外观,但是这仍不能对一个物体的视觉输出提供足够多的灵活性。

   在上一节中,我们将整个物体的材质定义为一个整体,但现实世界中的物体通常并不只包含有一种材质,而是由多种材质所组成。想想一辆汽车:它的外壳非常有光泽,车窗会部分反射周围的环境,轮胎不会那么有光泽,所以它没有镜面高光,轮毂非常闪亮(如果你洗车了的话)。汽车同样会有漫反射和环境光颜色,它们在整个物体上也不会是一样的,汽车有着许多种不同的环境光/漫反射颜色。总之,这样的物体在不同的部件上都有不同的材质属性。

   所以,上一节中的那个材质系统是肯定不够的,它只是一个最简单的模型,所以我们需要拓展之前的系统,引入漫反射和镜面光贴图(Map)。这允许我们对物体的漫反射分量(以及间接地对环境光分量,它们几乎总是一样的)和镜面光分量有着更精确的控制。

二、漫反射贴图

   我们希望通过某种方式对物体的每个片段单独设置漫反射颜色。有能够让我们根据片段在物体上的位置来获取颜色值的系统吗?

   这可能听起来很熟悉,而且事实上这个系统我们已经使用很长时间了。这听起来很像在之前教程中详细讨论过的纹理,而这基本就是这样:一个纹理。我们仅仅是对同样的原理使用了不同的名字:其实都是使用一张覆盖物体的图像,让我们能够逐片段索引其独立的颜色值。在光照场景中,它通常叫做一个漫反射贴图(Diffuse Map)(3D艺术家通常都这么叫它),它是一个表现了物体所有的漫反射颜色的纹理图像。

   为了演示漫反射贴图,我们将会使用下面的图片,它是一个有钢边框的木箱:

在这里插入图片描述

   在着色器中使用漫反射贴图的方法和纹理教程中是完全一样的。但这次我们会将纹理储存为Material结构体中的一个sampler2D。我们将之前定义的vec3漫反射颜色向量替换为漫反射贴图。

   注意sampler2D是所谓的不透明类型(Opaque Type),也就是说我们不能将它实例化,只能通过uniform来定义它。如果我们使用除uniform以外的方法(比如函数的参数)实例化这个结构体,GLSL会抛出一些奇怪的错误。这同样也适用于任何封装了不透明类型的结构体。

   我们也移除了环境光材质颜色向量,因为环境光颜色在几乎所有情况下都等于漫反射颜色,所以我们不需要将它们分开储存:

struct Material {
    sampler2D diffuse;
    vec3      specular;
    float     shininess;
}; 
...
in vec2 TexCoords;

   如果你非常固执,仍想将环境光颜色设置为一个(漫反射值之外)不同的值,你也可以保留这个环境光的vec3,但整个物体仍只能拥有一个环境光颜色。如果想要对不同片段有不同的环境光值,你需要对环境光值单独使用另外一个纹理。

   注意我们将在片段着色器中再次需要纹理坐标,所以我们声明一个额外的输入变量。接下来我们只需要从纹理中采样片段的漫反射颜色值即可:

vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, TexCoords));

   不要忘记将环境光的材质颜色设置为漫反射材质颜色同样的值。

vec3 ambient = light.ambient * vec3(texture(material.diffuse, TexCoords));

   这就是使用漫反射贴图的全部步骤了。你可以看到,这并不是什么新的东西,但这能够极大地提高视觉品质。为了让它正常工作,我们还需要使用纹理坐标更新顶点数据,将它们作为顶点属性传递到片段着色器,加载材质并绑定材质到合适的纹理单元。

   更新后的顶点数据可以在这里找到。顶点数据现在包含了顶点位置、法向量和立方体顶点处的纹理坐标。让我们更新顶点着色器来以顶点属性的形式接受纹理坐标,并将它们传递到片段着色器中:

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;
layout (location = 2) in vec2 aTexCoords;
...
out vec2 TexCoords;

void main()
{
    ...
    TexCoords = aTexCoords;
}

   记得去更新两个VAO的顶点属性指针来匹配新的顶点数据,并加载箱子图像为一个纹理。在绘制箱子之前,我们希望将要用的纹理单元赋值到material.diffuse这个uniform采样器,并绑定箱子的纹理到这个纹理单元:

lightingShader.setInt("material.diffuse", 0);
...
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, diffuseMap);

   使用了漫反射贴图之后,细节再一次得到惊人的提升,这次箱子有了光照开始闪闪发光(字面意思也是)了。你的箱子看起来可能像这样:

在这里插入图片描述

你可以在这里找到程序的全部代码。

三、镜面光贴图

   你可能会注意到,镜面高光看起来有些奇怪,因为我们的物体大部分都是木头,我们知道木头不应该有这么强的镜面高光的。我们可以将物体的镜面光材质设置为vec3(0.0)来解决这个问题,但这也意味着箱子钢制的边框将不再能够显示镜面高光了,我们知道钢铁应该是有一些镜面高光的。所以,我们想要让物体的某些部分以不同的强度显示镜面高光。这个问题看起来和漫反射贴图非常相似。是巧合吗?我想不是。

   我们同样可以使用一个专门用于镜面高光的纹理贴图。这也就意味着我们需要生成一个黑白的(如果你想得话也可以是彩色的)纹理,来定义物体每部分的镜面光强度。下面是一个镜面光贴图(Specular Map)的例子:
在这里插入图片描述

   镜面高光的强度可以通过图像每个像素的亮度来获取。镜面光贴图上的每个像素都可以由一个颜色向量来表示,比如说黑色代表颜色向量vec3(0.0),灰色代表颜色向量vec3(0.5)。在片段着色器中,我们接下来会取样对应的颜色值并将它乘以光源的镜面强度。一个像素越「白」,乘积就会越大,物体的镜面光分量就会越亮。

   由于箱子大部分都由木头所组成,而且木头材质应该没有镜面高光,所以漫反射纹理的整个木头部分全部都转换成了黑色。箱子钢制边框的镜面光强度是有细微变化的,钢铁本身会比较容易受到镜面高光的影响,而裂缝则不会。

   从实际角度来说,木头其实也有镜面高光,尽管它的反光度(Shininess)很小(更多的光被散射),影响也比较小,但是为了教学目的,我们可以假设木头不会对镜面光有任何反应。

   使用Photoshop或Gimp之类的工具,将漫反射纹理转换为镜面光纹理还是比较容易的,只需要剪切掉一些部分,将图像转换为黑白的,并增加亮度/对比度就好了。

四、采样镜面光贴图

   镜面光贴图和其它的纹理非常类似,所以代码也和漫反射贴图的代码很类似。记得要保证正确地加载图像并生成一个纹理对象。由于我们正在同一个片段着色器中使用另一个纹理采样器,我们必须要对镜面光贴图使用一个不同的纹理单元(见纹理),所以我们在渲染之前先把它绑定到合适的纹理单元上:

lightingShader.setInt("material.specular", 1);
...
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, specularMap);

   接下来更新片段着色器的材质属性,让其接受一个sampler2D而不是vec3作为镜面光分量:

struct Material {
    sampler2D diffuse;
    sampler2D specular;
    float     shininess;
};

   最后我们希望采样镜面光贴图,来获取片段所对应的镜面光强度:

vec3 ambient  = light.ambient  * vec3(texture(material.diffuse, TexCoords));
vec3 diffuse  = light.diffuse  * diff * vec3(texture(material.diffuse, TexCoords));  
vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoords));
FragColor = vec4(ambient + diffuse + specular, 1.0);

   通过使用镜面光贴图我们可以可以对物体设置大量的细节,比如物体的哪些部分需要有闪闪发光的属性,我们甚至可以设置它们对应的强度。镜面光贴图能够在漫反射贴图之上给予我们更高一层的控制。

   如果你想另辟蹊径,你也可以在镜面光贴图中使用真正的颜色,不仅设置每个片段的镜面光强度,还设置了镜面高光的颜色。从现实角度来说,镜面高光的颜色大部分(甚至全部)都是由光源本身所决定的,所以这样并不能生成非常真实的视觉效果(这也是为什么图像通常是黑白的,我们只关心强度)。

   如果你现在运行程序的话,你可以清楚地看到箱子的材质现在和真实的钢制边框箱子非常类似了:
在这里插入图片描述

   你可以在这里找到程序的全部源码。

   通过使用漫反射和镜面光贴图,我们可以给相对简单的物体添加大量的细节。我们甚至可以使用法线/凹凸贴图(Normal/Bump Map)或者反射贴图(Reflection Map)给物体添加更多的细节,但这些将会留到之后的教程中。把你的箱子给你的朋友或者家人看看,并且坚信我们的箱子有一天会比现在更加漂亮!

练习

   调整光源的环境光、漫反射和镜面光向量,看看它们如何影响箱子的视觉输出。
   尝试在片段着色器中反转镜面光贴图的颜色值,让木头显示镜面高光而钢制边缘不反光(由于钢制边缘中有一些裂缝,边缘仍会显示一些镜面高光,虽然强度会小很多):参考解答
   使用漫反射贴图创建一个彩色而不是黑白的镜面光贴图,看看结果看起来并不是那么真实了。如果你不会生成的话,可以使用这张彩色的镜面光贴图:最终效果
   添加一个叫做放射光贴图(Emission Map)的东西,它是一个储存了每个片段的发光值(Emission Value)的贴图。发光值是一个包含(假设)光源的物体发光(Emit)时可能显现的颜色,这样的话物体就能够忽略光照条件进行发光(Glow)。游戏中某个物体在发光的时候,你通常看到的就是放射光贴图(比如 机器人的眼,或是箱子上的灯带)。将这个纹理(作者为 creativesam)作为放射光贴图添加到箱子上,产生这些字母都在发光的效果:参考解答,最终效果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/453346.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

10、设计模式之外观模式(Facade)

一、什么是外观模式 这个大家一定是经常使用的,外观模式(门面模式)是一种结构型设计模式。它提供一个统一的接口,用于访问子系统中的一组接口,隐藏了系统的复杂性。最简单的应用就是,当controller层的逻辑处…

ArcGIS JSAPI 学习教程 - ArcGIS Maps SDK for JavaScript 不同版本4.8-4.28(最新版)离线部署

ArcGIS JSAPI 学习教程 - ArcGIS Maps SDK for JavaScript 不同版本4.8-4.28(最新版)SDK离线部署 测试资源4.18 以及之前版本4.19 以及之后版本 接触一段时间 ArcGIS JSAPI 之后,整体感觉还好,后来需要解决不同版本问题&#xff0…

php apache 后台超时设置

最近在写一个thinkphp项目的时候,发现Ajax从后端请求数据时间比较长,大概需要45秒左右,但是一旦请求时间超过40s,页面就会超时500了,一开始以为是ajax请求时间不能太长,后来将Ajax请求改为同步且timeout设置…

休闲食品类目电商数据分析

食品的受众群里非常高,所以各品牌竞争也非常大,休闲食品作为人们闲余品味之物,也包揽了各大电商平台的主要流量,随着经济水平的提升,休闲食品类目的销售也随之不断增加,下面我们结合一些数据,去…

基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的商品识别系统(深度学习+UI界面+训练数据集+Python代码)

摘要:在零售行业的技术进步中,开发商品识别系统扮演着关键角色。本博文详细阐述了如何利用深度学习技术搭建一个高效的商品识别系统,并分享了一套完整的代码实现。系统采用了性能强劲的YOLOv8算法,同时对YOLOv7、YOLOv6、YOLOv5等…

web项目抢购模块测试

web项目抢购模块测试 抢购模块(先测后台,再测前台)流程抢购用例编写测试点--后台抢购用例编写测试点--前台用例设计 面试题1: 当你发现研发实现的结果与需求不一致时怎么办? 需求评审的时候:需要确认所有输入类型的校验是针对单独的输入框做的还是在最终提交时校验 抢购模块 需…

深入挖掘C语言之——联合

目录 联合的定义 联合的特点 联合的应用场景 在C语言中,联合(Union)是一种特殊的数据结构,它允许在同一内存地址存储不同类型的数据。与结构体(Struct)不同的是,联合中的所有成员共享同一块内…

算法(结合算法图解)

算法简介简单查找二分查找法 选择排序内存的工作原理数组和链表数组选择排序小结 递归小梗 要想学会递归,首先要学会递归。 递归的基线条件和递归条件递归和栈小结 快速排序分而治之快速排序合并排序时间复杂度的平均情况和最糟情况小结 散列表散列函数缓冲小结性能…

科研三维模型高精度三维扫描服务3d逆向测绘建模工业产品抄数设计

三维抄数技术在科研三维模型的应用已经日益广泛,其高精度、高效率的特点使得科研工作者能够更快速、更准确地获取和分析数据。这一技术的核心在于通过专业的三维扫描仪对实物进行高精度测量,再将这些数据转化为三维数字模型,为后续的研究提供…

深入浅出计算机网络 day.2 概论⑤ 计算机网络的性能指标

请等一等, 用一个完整的春天 捣碎麦田 —— 24.3.10 一、计算机网络的性能指标 上 计算机网络的性能指标被用来从不同方面度量计算机网络的性能 常用的八个计算机网络性能指标 速率 比特(bit)是计算机中数据量的基本单位,一个比特…

智能商品管理系统:驱动零售盈利型的数据利器

在数字化浪潮席卷全球的今天,零售业正面临着前所未有的变革。智能商品管理系统作为零售业的“数据利器”,正在以其强大的数据分析能力和智能化的管理手段,助力零售企业实现盈利增长和业务创新。 智能商品管理系统通过集成大数据、云计算、人…

MySQL教程-安装与卸载

MySQL官网 https://www.mysql.com MySQL 官方提供了两种不同的版本: 社区版 MySQL Community Server,免费,但不提供任何技术支持商业版 MySQL Enterprise Server,收费,官方可提供技术支持 本教程采用MySQL的社区版作…

零基础如何入门ai编程?小白必看!

当我们谈到人工智能编程时,很多人可能会感到有些困惑和无措。但是,其实只要有一定的学习兴趣和基础知识,任何人都可以开始学习AI编程。本文将为零基础的读者介绍如何入门AI编程,并提供详细的步骤。 ▶ 第一步:理解人工…

深入理解 Vuex:从基础到应用场景

前言 在之前的文章中,我们已经对 Vue.js 有了一定的了解。今天我们要对Vue官方的状态共享管理器Vuex进行详细讲解,将其基本吃透,目标是面对大多数业务需求; 一、介绍 Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式。它采用…

【Power Apps】响应式布局与布局容器

做响应式布局之前要先把这里关掉呦。 这里我可能要先简单说一下什么是响应式布局,说白了就是咱们做出来的应用的界面可以根据当前窗口的大小来自适应地调整内部组件的大小、位置等属性,这样我们只需要做一套页面,就可以既在桌面端使用&#x…

linux-MDK can电机带导轨

确保接线正确,这个带导轨的电机需要24V的电压 $ ls /dev //查看端口是什么$ sudo slcand -o -s6 /dev/ttyACM0 can0 //将端口封装为can0 $ sudo ip link set can0 up //打开端口 按照电机说明书,按照需要的指令计算检验和&#xf…

【C语言】tcp_transmit_skb

一、__tcp_transmit_skb讲解 这个函数 __tcp_transmit_skb() 是 Linux 内核中 TCP/IP 协议栈的一部分,负责处理传输控制协议(TCP)数据包的发送。具体来说,这个函数将 TCP 头部添加到一个没有任何头部信息的 socket buffer (sk_bu…

食药物质创新 赋能中式滋补健康产业发展交流会圆满结束

3月5日,“食药物质创新 赋能中式滋补健康产业发展交流会”在山东国际会展中心召开。本次会议由中国生物发酵产业协会主办,浙江科技大学、未名太研生物科技(绍兴)有限公司承办,汇乐达供应链服务(常州)有限责任公司支持。本次论坛旨在加强行业创…

C语言--从零开始的扫雷游戏

C语言--从零开始的扫雷游戏 1. 游戏说明2. 总体代码3. 详细讲解3.1 菜单部分3.2 游戏主体部分3.2.1 总体分析3.2.2 棋盘初始化3.2.3 棋盘展示3.2.4 设置地雷3.2.5 扫雷阶段3.2.6 统计雷个数的代码3.2.7 使用迭代的方式进行展开:3.2.8 扫雷部分主体代码 4. 总结 1. 游…