【论文阅读】ACM MM 2023 PatchBackdoor:不修改模型的深度神经网络后门攻击

文章目录

  • 一.论文信息
  • 二.论文内容
    • 1.摘要
    • 2.引言
    • 3.作者贡献
    • 4.主要图表
    • 5.结论

一.论文信息

论文题目: PatchBackdoor: Backdoor Attack against Deep Neural Networks without Model Modification(PatchBackdoor:不修改模型的深度神经网络后门攻击)

论文来源: 2023-ACM MM

论文团队: 清华大学人工智能产业研究院(AIR)&武汉大学&上海交通大学&上海人工智能实验室

在这里插入图片描述)

二.论文内容

1.摘要

后门攻击是深度学习系统在安全关键场景中的主要威胁,其目的是在攻击者控制的条件下触发神经网络模型的不当行为。然而,大多数后门攻击必须通过使用有毒数据和或直接编辑模型来修改神经网络模型,这导致了一种常见但错误的信念,即通过适当保护模型可以很容易地避免后门攻击。在本文中,我们证明了后门攻击可以在不修改模型的情况下实现。我们不向训练数据或模型中注入后门逻辑,而是在摄像机前放置一个精心设计的补丁(即后门补丁),与输入的图像一起馈送到模型中。当输入图像包含攻击者控制的触发对象时,该补丁可以被训练成在大多数时间表现正常,而产生错误的预测。我们的主要技术包括一种有效的训练方法来生成后门补丁一种数字物理转换建模方法来增强补丁在实际部署中的可行性。大量实验表明,PatchBackdoor可以应用于常见的深度学习模型(VGG, MobileNet, ResNet),在分类任务上的攻击成功率为93%至99%。此外,我们在现实场景中实现了PatchBackdoor,并表明攻击仍然具有威胁性。

2.引言

深度神经网络(Deep Neural Networks, dnn)广泛应用于许多安全关键边缘系统,如自动驾驶[8]、人脸认证[42]和医疗诊断[31,35]。在为许多应用带来极大便利的同时,深度学习(DL)的安全问题也受到了广泛关注。

众所周知,DNN容易受到多种类型的攻击,而后门攻击是其中的主要一种。大多数后门攻击方法通过使用有毒数据集训练受害者模型来进行攻击[13,28]。当预测正常测试样本时,训练模型将具有较高的良性准确性,而当存在某些攻击者控制的触发器时,模型将给出错误的预测。还有一些攻击者通过直接修改模型结构和/或权重来进行攻击[6],这种攻击通常发生在第三方机器学习平台上,用户将培训或服务外包给不可信的服务提供商。攻击者可以修改他们的模型,在模型实际部署之前注入后门。

后门攻击的一个主要限制是需要修改模型,这在大多数安全关键场景中都是具有挑战性的。例如,大多数自动驾驶公司使用自己收集和仔细过滤的数据集进行培训,也不会将培训外包给云服务。在部署时,可以将模型放在只读内存中以确保完整性。因此,尽管后门攻击看起来很有威胁,但对于大多数可以安全地管理训练数据集和部署模型的模型开发人员来说,它并不那么重要。

在本文中,我们提出在不修改受害者模型的情况下实现后门攻击。我们的想法是通过附加一个恒定的输入补丁来注入后门逻辑,这是可行的,因为许多视觉应用具有不变的前景/背景。这种攻击是危险的,因为(i)模型开发人员很难避免这种攻击,因为攻击发生在模型安全部署之后;(ii)攻击者可以灵活地控制后门逻辑来实现实际攻击。

使用输入补丁为深度神经网络后门的想法与对抗性补丁攻击密切相关[2,13],这在文献中得到了广泛的研究。然而,对抗性补丁攻击的目标是,如果输入中出现了精心设计的补丁,则直接产生错误的预测。相反,我们的目标是在前景或背景中注入一个带有恒定补丁的隐藏后门逻辑。我们的方法是后门和对抗性补丁攻击之间的一种新颖的联系。

我们的方法包括两个主要技术。首先,我们采用蒸馏式训练方法生成不带标记训练数据的后门补丁。具体来说,我们设计了一个训练目标,共同最大化patch隐身性(即,在正常输入上模仿良性模型行为)和攻击有效性(即,在触发条件下产生不当行为)。

其次,为了提高物理世界中的攻击效果,我们提出用可微变换(包括形状变换和颜色变换)对数字-物理视觉位移进行建模,使数字训练后的后门补丁可以直接应用于物理世界。

为了评估我们的方法,我们在三个数据集(CIFAR10[24]、Imagenette[18]、Caltech101[9])和三个模型(VGG[40]、ResNet[16]、MobileNet[39])上进行了实验。结果表明,该算法在不同情况下都具有较强的鲁棒性,攻击成功率在93% ~ 99%之间。同时,我们的攻击是隐形的,因为后门补丁不会影响受害者模型的良性准确性,并且很难被分布外(OOD)检测器检测到。通过使用不同的剪枝比率(0%、30%、60%、90%)进行测试,我们还证明了我们的攻击在不同的过参数化水平上是有效的。通过将攻击部署到物理世界,我们演示了在真实场景中攻击的可行性。

本文的研究贡献如下:

  • 据我们所知,这是第一次针对神经网络的后门攻击,不需要对受害者模型进行任何修改。
  • 我们为攻击设计了一个训练方案,该方案可以在最小的数据需求下高效地生成有效的后门补丁。
  • 我们引入了一种数字物理转换建模方法,可以提高实际部署中的攻击有效性。
  • 我们对攻击的有效性和反侦查能力进行全面评估。

源代码在 https://github.com/XaiverYuan/PatchBackdoor

3.作者贡献

  • 本文提出的后门攻击不对模型进行修改,既不修改模型结构,也不利用训练数据污染模型。
  • 我们为攻击设计了一个训练方案,该方案可以在最小的数据需求下高效地生成有效的后门补丁。
  • 我们引入了一种数字物理转换建模方法,可以提高实际部署中的攻击有效性(发生在部署阶段的后门攻击)。
  • 我们对攻击的有效性和反侦查能力进行全面评估。

4.主要图表

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

5.结论

我们引入了一种针对DNN模型的后门攻击,该攻击通过在相机视图中附加补丁而不是修改训练过程或模型来注入后门逻辑。实验证明了该方法的有效性和在物理世界中的可行性。我们的工作表明,除了训练数据和模型之外,恒定的相机前景/背景可能是边缘人工智能系统的重要攻击面。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/452521.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

西井科技参与IATA全球货运大会 以AI绿动能引领智慧空港新未来

3月12日至14日,由国际航空运输协会IATA主办的全球货运大会(World Cargo Symposium)在中国香港成功举办,这是全球航空货运领域最大规模与影响力的年度盛会。作为大物流领域全球领先的“智能化与新能源化”综合解决方案提供商&#…

参加大广赛是否有价值?让我们来看答案!

大广赛全称是全国大学生广告艺术大赛,是中国最大的高校广告创意竞赛活动。它由教育部高等教育司指导,中国传媒大学、大广赛文化传播(北京)有限公司共同举办。 命题素材在线预览https://js.design/f/Jspbti?sourcesh&planbtt…

互联网操作系统Puter

什么是 Puter ? Puter 是一个先进的开源桌面环境,运行在浏览器中,旨在具备丰富的功能、异常快速和高度可扩展性。它可以用于构建远程桌面环境,也可以作为云存储服务、远程服务器、Web 托管平台等的界面。Puter 是一个隐私至上的个…

垃圾清理软件大全免费 磁盘空间不足?注册表不敢乱动怎么办?ccleaner官方下载

在日常的工作中,面对重要文件时往往都会备份一份;在下载文件时,有时也会不小心把一份文件下载好多次。这些情况会导致电脑中出现重复的文件,删除这些重复文件,可以节省电脑空间,帮助提高电脑运行速度。那么…

websocket 使用示例

websocket 使用示例 前言html中使用vue3中使用1、安装websocket依赖2、代码 vue2中使用1、安装websocket依赖2、代码 前言 即时通讯webSocket 的使用 html中使用 以下是一个简单的 HTML 页面示例,它连接到 WebSocket 服务器并包含一个文本框、一个发送按钮以及 …

大语言模型RAG-技术概览 (一)

大语言模型RAG-技术概览 (一) 一 RAG概览 检索增强生成(Retrieval-AugmentedGeneration, RAG)。即大模型在回答问题或生成问题时会先从大量的文档中检索相关的信息,然后基于这些信息进行回答。RAG很好的弥补了传统搜索方法和大模型两类技术…

自然语言处理(NLP)—— 语义关系提取

语义关系是指名词或名词短语之间的联系。这些关系可以是表面形式(名词性实体)之间的联系,也可以是知识工程中概念之间的联系。在自然语言处理(NLP)和文本挖掘领域,识别和理解这些语义关系对于信息提取、知识…

[媒体宣传]上海有哪些可以邀约的新闻媒体资源汇总

传媒如春雨,润物细无声,大家好,我是51媒体网胡老师。 上海作为中国最大的城市之一,拥有丰富的新闻媒体资源。以下是一些可以邀约的新闻媒体资源汇总: 报纸媒体: 《新民晚报》:上海最具影响力…

C#,红黑树(Red-Black Tree)的构造,插入、删除及修复、查找的算法与源代码

1 红黑树(Red-Black Tree) 如果二叉搜索树满足以下红黑属性,则它是红黑树: 每个节点不是红色就是黑色。根是黑色的。每片叶子(无)都是黑色的。如果一个节点是红色的,那么它的两个子节点都是黑色的。对于每个节点,从节点到后代叶的所有路径都包含相同数量的黑色节点。红…

Linux进程概念(2)

一、进程状态 Linux的进程状态实际上就是 struct task_struct 结构体中的一个变量 1.1状态汇总 其中,Linux 状态是用数组储存的,如下: static const char * const task_state_array[] { "R (running)", // 0 …

OceanBase4.2版本 Docker 体验

📢📢📢📣📣📣 哈喽!大家好,我是【IT邦德】,江湖人称jeames007,10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】!😜&am…

Unity开发中Partial 详细使用案例

文章目录 **1. 分割大型类****2. 与 Unity 自动生成代码协同工作****3. 团队协作****4. 共享通用逻辑****5. 自定义编辑器相关代码****6. 配合 Unity 的 ScriptableObjects 使用****7. 多人协作与版本控制系统友好** 在 Unity 开发中, partial 关键字是 C# 语言提供…

ChatGPT提问技巧——问题解答提示

ChatGPT提问技巧——问题解答提示 问题解答提示是一种允许模型生成回答特定问题或任务的文本的技术。要做到这一点,需要向模型提供一个问题或任务作为输入,以及与该问题或任务相关的任何附加信息。 一些提示示例及其公式如下: 示例 1&…

低代码开发平台-企业级可视化快速开发工具

一、你们是否也遇到了以下问题 (1)作为传统型的软件公司,你们是否也遇到以下困扰: (2)作为大型企业软件开发部,你们是否也遇到以下困扰: 二、低代码平台介绍 MSPF快速开发平台是一…

基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的障碍物检测系统(深度学习代码+UI界面+训练数据集)

摘要:开发障碍物检测系统对于道路安全性具有关键作用。本篇博客详细介绍了如何运用深度学习构建一个障碍物检测系统,并提供了完整的实现代码。该系统基于强大的YOLOv8算法,并对比了YOLOv7、YOLOv6、YOLOv5,展示了不同模型间的性能…

Elasticsearch使用Kibana进行基础操作

一、Restful接口 Elasticsearch通过RESTful接口提供与其进行交互的方式。在ES中,提供了功能丰富的RESTful API的操作,包括CRUD、创建索引、删除索引等操作。你可以用你最喜爱的 web 客户端访问 Elasticsearch 。事实上,你甚至可以使用 curl …

国内新闻媒体排行,如何邀约媒体现场造势?

传媒如春雨,润物细无声,大家好,我是51媒体网胡老师。 国内新闻媒体排行可以根据多个维度进行,例如影响力、发行量、网站流量等。以下是一些常见的国内新闻媒体排名方式: 综合影响力排名:人民日报、新华社、…

RocketMQ 面试题及答案整理,最新面试题

RocketMQ的消息存储机制是如何设计的? RocketMQ消息存储机制的设计原理: 1、CommitLog文件: 所有的消息都存储在一个连续的CommitLog文件中,保证了消息的顺序写入,提高写入性能。 2、消费队列: 为每个主…

honle电源维修UV电源控制器维修EVG EPS60

好乐UV电源控制器维修;honle控制器维修;UV电源维修MUC-Steuermodul 2 LΛmpen D-82166 主要维修型号: EVG EPS 60/120、EVG EPS 100、EVG EPS200、EVG EPS 220、EVG EPS 340、EVG EPS40C-HMI、EVG EPS60 HONLE好乐uv电源维修故障包括&#…

理论学习 BatchNorm2d

import torch import torch.nn as nn# With Learnable Parameters m nn.BatchNorm2d(100) # Without Learnable Parameters m nn.BatchNorm2d(100, affineFalse) input torch.randn(20, 100, 35, 45) output m(input)print(output) print(output.shape)这段代码展示了如何使…