STM32的GPIO初始化配置-学习笔记

简介:

        由于刚开始没有学懂GPIO的配置原理,导致后面学习其它外设的时候总是产生阻碍,因为其它外设要使用前,大部分都要配置GPIO的初始化,因此这几天重新学习了一遍GPIO的配置,记录如下。

        首先我们要知道芯片上的引脚,并不是只有GPIO的功能,还能复用成其他功能,比如PA9和PA10引脚,既可以配置成普通的IO口输出高低电平,也可以配置成UART1的TX和RX引脚。今天就以这这两个例子记录一下配置过程。

实验平台芯片是stmf103,野火的指南者开发板。使用hal库开发。

例1:PB5\PB0\PB1配置成普通IO口,控制LED灯的亮灭,

例2:将PA9配置成UART1的TX,将PA10配置成UART1的RX。

一、GPIO的功能框图

此图来自野火的《零死角玩转stm32》,此图在《stm32f10x参考手册》的GPIO章节也有,野火的标注得有需要,方便说明。

1.输出模式:即由单片机控制引脚的高低电平。

输出模式有:推挽输出、开漏输出、复用推挽输出、复用开漏输出。常用推挽输出,复用推挽输出。

①处就是芯片外部引出的引脚,左边的是芯片内部的,从外面看不见。一个引脚在同一时刻,要么是输出,要么是输入,不能同时存在。

②处两个反向串联的MOS管,就实现了推挽输出,这种模式就是普通的IO口输出高低电平,通过操作③和位置位/清除寄存器(BSRR)来控制引脚输出高低电平,从而控制外部的灯的亮灭。

④处是接片上外设,将引脚配置成其他功能,如我们将PA9配置成UART1的TX功能,这时候就不需要去配置③处的ODR和BSRR寄存器。 

2.输入模式:即由外部控制引脚的高低电平

        输入模式有:浮空输入、模拟输入、上拉输入、下拉输入,如果是输入模式的话,就是由外部控制引脚的高低电平变化,单片机去读引脚的电平变化,从而知道外部干了什么。

        比如外部接了按键,按键按下产生低电平,按键释放产生高电平,这时候单片机通过引脚高低变化就知道了按键按下了,进而产生相应的处理,此功能往往和中断一起。在此不做过多的讲解,后面学了中断之后再记录。

3.GPIO寄存器

在《stm32f10x参考手册》GPIO寄存器章节有各个寄存器的功能和作用讲解,由于我们使用hal库开发,操作寄存器的工作由hal做了,我们只需要了解有哪些参数可以修改及其作用。如果有兴趣可以看看源码是怎么操作寄存器的。

1.GPIO寄存器结构体定义

GPIO_TypeDef中就是控制GPIO的7个32位寄存器,具体每个bit位的作用记得看参考手册。

这个结构体不需要我们传入参数。我们需要修改的是GPIO_InitTypeDef结构体。

typedef struct
{
  __IO uint32_t CRL;
  __IO uint32_t CRH;
  __IO uint32_t IDR;
  __IO uint32_t ODR;
  __IO uint32_t BSRR;
  __IO uint32_t BRR;
  __IO uint32_t LCKR;
} GPIO_TypeDef;

GPIO_InitTypeDef结构体定义如下,可以由我们自己配置gpio引脚,速度,模式,这三个参数都是去修改GPIO_TypeDef里面的成员的某个位的。


typedef struct
{
  uint16_t GPIO_Pin;             /*!< Specifies the GPIO pins to be configured.
                                      This parameter can be any value of @ref GPIO_pins_define */

  GPIOSpeed_TypeDef GPIO_Speed;  /*!< Specifies the speed for the selected pins.
                                      This parameter can be a value of @ref GPIOSpeed_TypeDef */

  GPIOMode_TypeDef GPIO_Mode;    /*!< Specifies the operating mode for the selected pins.
                                      This parameter can be a value of @ref GPIOMode_TypeDef */
}GPIO_InitTypeDef;

2.驱动GPIO_TypeDef中寄存器的库函数函数GPIO_Init

        我们只需要传入端口和初始化结构体即可。请看下面二的例程。

/**
  * @brief  Initializes the GPIOx peripheral according to the specified
  *         parameters in the GPIO_InitStruct.
  * @param  GPIOx: where x can be (A..G) to select the GPIO peripheral.
  * @param  GPIO_InitStruct: pointer to a GPIO_InitTypeDef structure that
  *         contains the configuration information for the specified GPIO peripheral.
  * @retval None
  */
void GPIO_Init(GPIO_TypeDef* GPIOx, GPIO_InitTypeDef* GPIO_InitStruct)
{
  uint32_t currentmode = 0x00, currentpin = 0x00, pinpos = 0x00, pos = 0x00;
  uint32_t tmpreg = 0x00, pinmask = 0x00;
  /* Check the parameters */
  assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
  assert_param(IS_GPIO_MODE(GPIO_InitStruct->GPIO_Mode));
  assert_param(IS_GPIO_PIN(GPIO_InitStruct->GPIO_Pin));  
  
/*---------------------------- GPIO Mode Configuration -----------------------*/
  currentmode = ((uint32_t)GPIO_InitStruct->GPIO_Mode) & ((uint32_t)0x0F);
  if ((((uint32_t)GPIO_InitStruct->GPIO_Mode) & ((uint32_t)0x10)) != 0x00)
  { 
    /* Check the parameters */
    assert_param(IS_GPIO_SPEED(GPIO_InitStruct->GPIO_Speed));
    /* Output mode */
    currentmode |= (uint32_t)GPIO_InitStruct->GPIO_Speed;
  }
/*---------------------------- GPIO CRL Configuration ------------------------*/
  /* Configure the eight low port pins */
  if (((uint32_t)GPIO_InitStruct->GPIO_Pin & ((uint32_t)0x00FF)) != 0x00)
  {
    tmpreg = GPIOx->CRL;
    for (pinpos = 0x00; pinpos < 0x08; pinpos++)
    {
      pos = ((uint32_t)0x01) << pinpos;
      /* Get the port pins position */
      currentpin = (GPIO_InitStruct->GPIO_Pin) & pos;
      if (currentpin == pos)
      {
        pos = pinpos << 2;
        /* Clear the corresponding low control register bits */
        pinmask = ((uint32_t)0x0F) << pos;
        tmpreg &= ~pinmask;
        /* Write the mode configuration in the corresponding bits */
        tmpreg |= (currentmode << pos);
        /* Reset the corresponding ODR bit */
        if (GPIO_InitStruct->GPIO_Mode == GPIO_Mode_IPD)
        {
          GPIOx->BRR = (((uint32_t)0x01) << pinpos);
        }
        else
        {
          /* Set the corresponding ODR bit */
          if (GPIO_InitStruct->GPIO_Mode == GPIO_Mode_IPU)
          {
            GPIOx->BSRR = (((uint32_t)0x01) << pinpos);
          }
        }
      }
    }
    GPIOx->CRL = tmpreg;
  }
/*---------------------------- GPIO CRH Configuration ------------------------*/
  /* Configure the eight high port pins */
  if (GPIO_InitStruct->GPIO_Pin > 0x00FF)
  {
    tmpreg = GPIOx->CRH;
    for (pinpos = 0x00; pinpos < 0x08; pinpos++)
    {
      pos = (((uint32_t)0x01) << (pinpos + 0x08));
      /* Get the port pins position */
      currentpin = ((GPIO_InitStruct->GPIO_Pin) & pos);
      if (currentpin == pos)
      {
        pos = pinpos << 2;
        /* Clear the corresponding high control register bits */
        pinmask = ((uint32_t)0x0F) << pos;
        tmpreg &= ~pinmask;
        /* Write the mode configuration in the corresponding bits */
        tmpreg |= (currentmode << pos);
        /* Reset the corresponding ODR bit */
        if (GPIO_InitStruct->GPIO_Mode == GPIO_Mode_IPD)
        {
          GPIOx->BRR = (((uint32_t)0x01) << (pinpos + 0x08));
        }
        /* Set the corresponding ODR bit */
        if (GPIO_InitStruct->GPIO_Mode == GPIO_Mode_IPU)
        {
          GPIOx->BSRR = (((uint32_t)0x01) << (pinpos + 0x08));
        }
      }
    }
    GPIOx->CRH = tmpreg;
  }
}

二、PB5\PB0\PB1点亮LED灯例程

        指南者的RGB灯接在stm32f103上的PB5、PB0、PB1三个引脚上,故我们控制对应引脚输出低电平,即可点亮LED灯。

PB5点亮LED1的代码如下。编译后,野火的指南者扳子上,RGB灯以0.5s闪烁红灯。其余两个LED灯的控制,把PB5换成PB0或者PB1即可。

#include "stm32f10x.h"

void delay_nms(u16 time);
void LED_GPIO_Config(void);


//1.主函数
int main(void)
{	
	/* LED 端口初始化 */
	LED_GPIO_Config();

	while(1)
	{
		//GPIO_Pin_5置低电平,则LED1亮
		GPIO_ResetBits(GPIOB, GPIO_Pin_5);
		
		//延时让led1亮保持
		delay_nms(500);

		//GPIO_Pin_5置高电平,则LED1灭
		GPIO_SetBits(GPIOB, GPIO_Pin_5);
		//延时让led1亮保持
		delay_nms(500);
	}
}

//2.毫秒延时,72M,需要精确延时的话还是得定时器
void delay_nms(u16 time)
{    
   u16 i=0;  
   while(time--)
   {
      i=12000;  //自己定义
      while(i--) ;    
   }
}

//3.LED1初始化函数
void LED_GPIO_Config(void)
{		
		/*定义一个GPIO_InitTypeDef类型的结构体*/
    GPIO_InitTypeDef GPIO_InitStructure;

    /*开启GPIOB外设时钟*/
    RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOB, ENABLE);

    /*选择要控制的GPIO引脚*/
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;	

    /*设置引脚模式为通用推挽输出*/
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;   

    /*设置引脚速率为50MHz */   
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; 

    /*调用库函数,初始化GPIO*/
    GPIO_Init(GPIOB, &GPIO_InitStructure);	
    
    /* 给GPIO_Pin_5置高电平,即LED1关闭	*/
    GPIO_SetBits(GPIOB, GPIO_Pin_5);
	delay_nms(20);

}	 

三、PA9\PA10做UART1的TX和RX例程

        控制LED灯的亮灭只需要控制引脚输出高低电平即可,但是串口是通信接口,所以需要先说一下串口的数据帧格式,至于串口发送的时序图,咱们写软件的暂时可以不了解。

从上面的帧格式可以知道可变的是数据位、校验位、停止位,起始位固定由库函数实现。

在stm32f103单片机上,UART1是由PA9和PA10复用过来的,所以我们需要对GPIOA的pin9是TX要配置成复用推挽输出模式,pin10引脚是RX要配置成浮空输入模式。

配置流程:

①GPIO复用功能配置

②UART串口配置

③main函数里面调用串口收发函数,和PC上的串口助手互相发送消息

1.GPIO初始化配置

{

	GPIO_InitTypeDef GPIO_InitStructure;

	// 打开串口GPIOA的时钟
	DEBUG_USART_GPIO_APBxClkCmd(RCC_APB2Periph_GPIOA, ENABLE);
	
	// 将PA9的GPIO配置为推挽复用模式
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA,&GPIO_InitStructure);

  // 将USART Rx的GPIO配置为浮空输入模式
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
	GPIO_Init(GPIOA, &GPIO_InitStructure);
}

2.串口1初始化

        由于串口接受是由外部控制引脚电平,所以需要开启串口接受中断。

{

	USART_InitTypeDef USART_InitStructure;

	// 打开串口外设的时钟
	DEBUG_USART_APBxClkCmd(RCC_APB2Periph_USART1, ENABLE);
	// 配置串口的工作参数
	// 配置波特率
	USART_InitStructure.USART_BaudRate = 115200;
	// 配置 针数据字长
	USART_InitStructure.USART_WordLength = USART_WordLength_8b;
	// 配置停止位
	USART_InitStructure.USART_StopBits = USART_StopBits_1;
	// 配置校验位
	USART_InitStructure.USART_Parity = USART_Parity_No ;
	// 配置硬件流控制
	USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
	// 配置工作模式,收发一起
	USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
	// 完成串口的初始化配置
	USART_Init(USART1, &USART_InitStructure);
	
	//串口中断优先级配置
	NVIC_Configuration();
	
	// 使能串口接收中断
	USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);	
	
	// 使能串口
	USART_Cmd(USART1, ENABLE);	    
}

3.串口发送和发送函数

串口是按照字节发送的,每次发送一个字节,所以要发送多个字节的时候,需要用用循环发送。

/* 发送一个字节 */
void Usart_SendByte(USART_TypeDef* pUSARTx, uint8_t data)
{
	USART_SendData(pUSARTx, data);
	while( USART_GetFlagStatus(pUSARTx, USART_FLAG_TXE) == RESET );
}

4.完成代码

        实现下载到开发板之后,自动向串口1发送字符A,接受到PC发送的字符后,立马发给PC.

代码全部写在main.c里面即可。

#include "stm32f10x.h"
// #include "bsp_led.h"
// #include "bsp_usart.h"
// #include "stdlib.h"

void USART_Config(void);
void Usart_SendByte(USART_TypeDef* pUSARTx, uint8_t data);
static void NVIC_Configuration(void);

//1.主函数
int main(void)
{	
 
	USART_Config();
	Usart_SendByte(USART1,'A');

  while(1)
  {

  }
	return 0;
	
}
//2.串口初始化函数
void USART_Config(void)
{
	GPIO_InitTypeDef GPIO_InitStructure;
	USART_InitTypeDef USART_InitStructure;

	// 打开串口GPIO的时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
	
	// 打开串口外设的时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);

	// 将USART Tx的GPIO配置为推挽复用模式
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);

  // 将USART Rx的GPIO配置为浮空输入模式
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
	GPIO_Init(GPIOA, &GPIO_InitStructure);
	
	// 配置串口的工作参数
	// 配置波特率
	USART_InitStructure.USART_BaudRate = 115200;
	// 配置 针数据字长
	USART_InitStructure.USART_WordLength = USART_WordLength_8b;
	// 配置停止位
	USART_InitStructure.USART_StopBits = USART_StopBits_1;
	// 配置校验位
	USART_InitStructure.USART_Parity = USART_Parity_No ;
	// 配置硬件流控制
	USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
	// 配置工作模式,收发一起
	USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
	// 完成串口的初始化配置
	USART_Init(USART1, &USART_InitStructure);
	
	//串口中断优先级配置
	NVIC_Configuration();
	
	// 使能串口接收中断
	USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);	
	
	// 使能串口
	USART_Cmd(USART1, ENABLE);	    
}

//3.串口接受中断函数
static void NVIC_Configuration(void)
{
  NVIC_InitTypeDef NVIC_InitStructure;
  
  /* 嵌套向量中断控制器组选择 */
  NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
  
  /* 配置USART为中断源 */
  NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
  /* 抢断优先级*/
  NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
  /* 子优先级 */
  NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
  /* 使能中断 */
  NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
  /* 初始化配置NVIC */
  NVIC_Init(&NVIC_InitStructure);
}

//4.串口发送函数
void Usart_SendByte(USART_TypeDef* pUSARTx, uint8_t data)
{
	USART_SendData(pUSARTx, data);
	while( USART_GetFlagStatus(pUSARTx, USART_FLAG_TXE) == RESET );
}

//5.串口接受中断服务函数,USART1_IRQHandler在startup_stm32f10x_hs.s中定义,发生串口中断,自动执行这个函数。
void USART1_IRQHandler(void)
{
    uint8_t ucTemp;
	if(USART_GetITStatus(USART1,USART_IT_RXNE)!=RESET)
	{		
  
      ucTemp = USART_ReceiveData(USART1);
      Usart_SendByte(USART1,ucTemp);
	}

}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/452432.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于支持向量机SVM的点火电流预测

目录 支持向量机SVM的详细原理 SVM的定义 SVM理论 Libsvm工具箱详解 简介 参数说明 易错及常见问题 完整代码和数据下载链接:基于支持向量机SVM的点火电流预测(代码完整,数据齐全)资源-CSDN文库 https://download.csdn.net/download/abc991835105/88947558 SVM应用实例,基…

.Net Core 中间件验签

文章目录 为什么是用中间件而不是筛选器&#xff1f;代码实现技术要点context.Request.EnableBuffering()指针问题 小结 为什么是用中间件而不是筛选器&#xff1f; 为什么要用中间件验签&#xff0c;而不是筛选器去验签? 1、根据上图我们可以看到&#xff0c;中间件在筛选器之…

【Rockchip android7.1 平台rtl8821cs wifi移植调试】

Rockchip 平台rtl8821cs wifi移植调试 问题描述解决方法 郑重声明:本人原创博文&#xff0c;都是实战&#xff0c;均经过实际项目验证出货的 转载请标明出处:攻城狮2015 Platform: Rockchip rk3128 OS:Android 7.1.2 Kernel: 3.10 问题描述 客户需要在现在的板子上调一款RTL882…

前端的数据标记协议

文章目录 数据标记协议是什么数据标记协议的作用常见的数据标记协议Open Graph protocol 开放图谱协议基本元数据协议可选元数据结构化属性 —— 元数据的属性多个相同的元数据标签类型元数据的使用方法全局类型使用自定义类型使用对象类型使用歌曲对象类型视频对象类型文章对象…

算法打卡day15|二叉树篇04|110.平衡二叉树、257. 二叉树的所有路径、404.左叶子之和

算法题 Leetcode 110.平衡二叉树 题目链接:110.平衡二叉树 大佬视频讲解&#xff1a;平衡二叉树视频讲解 个人思路 可以用递归法&#xff0c;计算左右子树的高度差&#xff0c;当超过1时就不为平衡二叉树了&#xff1b; 解法 回顾一下二叉树节点的深度与高度&#xff1b; …

软件测试知识面试题:白盒测试、黑盒测试、测试用例

文章目录 白盒测试1、白盒测试分两类2、白盒测试的四个原则3、白盒测试常用的7类测试 黑盒测试1、黑盒测试的优缺点2、黑盒测试的方法3、黑盒测试的原则 测试用例1、测试用例包含2、设计测试用例所需的文档资料3、采用白盒测试技术设计用例的目的4、采用黑盒测试技术设计用例的…

网络编程套接字(3)——Java数据报套接字(UDP协议)

目录 一、Java数据报套接字通信模型 二、UDP数据报套接字编程 1、DatagramSocket &#xff08;1&#xff09;DatagramSocket构造方法 &#xff08;2&#xff09;DatagramSocket方法 2、DatagramPacket &#xff08;1&#xff09;DatagramPacket构造方法 &#xff08;2&…

spring启动时如何自定义日志实现

一、现象 最近在编写传统的springmvc项目时&#xff0c;遇到了一个问题&#xff1a;虽然在项目的web.xml中指定了log4j的日志启动监听器Log4jServletContextListener&#xff0c;且开启了日志写入文件&#xff0c;但是日志文件中只记录业务代码中我们声明了日志记录器的日志&a…

HTML静态网页成品作业(HTML+CSS)——电影加勒比海盗介绍设计制作(1个页面)

&#x1f389;不定期分享源码&#xff0c;关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 &#x1f3f7;️本套采用HTMLCSS&#xff0c;未使用Javacsript代码&#xff0c;共有1个页面。 二、作品演示 三、代…

数据结构从入门到精通——树和二叉树

树和二叉树 前言一、树概念及结构1.1树的概念1.2 树的相关概念&#xff08;重要&#xff09;1.3 树的表示1.4 树在实际中的运用&#xff08;表示文件系统的目录树结构&#xff09; 二、二叉树概念及结构2.1二叉树概念2.2现实中的二叉树2.3 特殊的二叉树2.4 二叉树的性质2.5 二叉…

PCB差分通孔的数值建模方法

目录 0 引言 1 基于CST的3D通孔模型 2 通孔模型的近似等效计算 3 利用ADS进行电路仿真分析 4 总结 0 引言 当数据速率超过10Gbps时&#xff0c;PCB上的通孔所带来的寄生参数会成为影响数据误码率的关键因素之一&#xff0c;虽然通过三维电磁场求解器提取过孔的行为模型&…

rust入门(1)创建项目

安装 vscode 安装插件 rust-analyzerNative Debug vscode 配置自动格式化代码 settings.json{"editor.defaultFoldingRangeProvider": null,"[rust]": {"editor.defaultFormatter": "rust-lang.rust-analyzer", // Makes the magi…

Python 井字棋游戏

井字棋是一种在3 * 3格子上进行的连珠游戏&#xff0c;又称井字游戏。井字棋的游戏有两名玩家&#xff0c;其中一个玩家画圈&#xff0c;另一个玩家画叉&#xff0c;轮流在3 * 3格子上画上自己的符号&#xff0c;最先在横向、纵向、或斜线方向连成一条线的人为胜利方。如图1所示…

静态时序分析:SDC约束命令set_output_delay详解

相关阅读 静态时序分析https://blog.csdn.net/weixin_45791458/category_12567571.html?spm1001.2014.3001.5482 目录 指定延迟值 指定端口、引脚列表 指定参考时钟 简单使用 指定时钟下降沿 指定参考端口、引脚 包含源、网络延迟 指定电平敏感 指定上升、下降沿 指…

Redux Toolkit

本文作者为 360 奇舞团前端开发工程师 阅读本文章前&#xff0c;需要先了解下 redux 的基本概念与用法&#xff0c;Redux Toolkit 是建立在 Redux 基础之上的工具包&#xff0c;因此需要对 Redux 的基本概念有一定的了解&#xff0c;包括 Action、Reducer、Store、Middleware 等…

C#四部曲(知识补充)

Unity跨平台原理 .Net相关 只要编写的时候遵循.NET的这些规则&#xff0c;就能在.NET平台下通用 各种源码→根据.NET规范编写→(虚拟机)生成CIL中间码(保存在程序集中)→转成操作系统原代码 跨语言← 跨平台↓ Unity跨平台原理&#xff08;Mono&#xff09; c#脚本→MonoC#编…

低压线性恒流LED恒流驱动芯片SM15633EH:用于洗墙灯和线条灯

洗墙灯和线条灯是两种常见的LED照明产品&#xff0c;它们都需要使用LED恒流驱动芯片来确保稳定、可靠的电流供应&#xff0c;从而保证LED的使用寿命和亮度。 对于洗墙灯而言&#xff0c;由于其发出的光线需要覆盖较大的区域&#xff0c;因此需要使用较大功率的LED芯片&#xf…

Linux操作系统与Windows文件互传(FTP)

一、开启Ubuntu下的FTP服务 打开Ubuntu的终端窗口&#xff0c;然后执行如下命令来安装 FTP服务。 sudo apt-get install vsftpd等待软件安装完成后&#xff0c;用输入以下命令打开vsftpd.conf文件 sudo vim /etc/vsftpd.conf 找到下图的两个使能语句改成如图即可(记住保存后再…

新版哥白尼系统快速下载哨兵数据

在新版哥白尼系统下载数据,总是failed或者速度很慢,如何实现MB/s的下载速度,只需要四步就可以解决: 1 登录系统,找到想下载的数据,点开product info按扭,​​​​​​ 2. 找到数据的Product id和Name, #Product id:https://zipper.dataspace.copernicus.eu/odata/v1/P…

Selenium操作浏览器,弹出文件选择框,实现自动选定“目标文件”

前言 本文是该专栏的第20篇,后面会持续分享python爬虫干货知识,记得关注。 我们在使用selenium操作目标页面的时候,可能会遇到如下图所示的情景。 在用selenium操作并点击页面元素的时候,会弹出一个文件选择框,需要我们选择目标文件,并点击确认按钮,目标文件才能上传成…