吴恩达 x Open AI ChatGPT ——如何写出好的提示词视频核心笔记

核心知识点脑图如下:

61e3f6438a13b00316b5a5b833081117.png

1、第一讲:课程介绍

  • 要点1:

13a1c789349524b21b2d4adb490ee273.png

上图展示了两种大型语言模型(LLMs)的对比:基础语言模型(Base LLM)和指令调整语言模型(Instruction Tuned LLM)。

基础语言模型(Base LLM)

功能:基础语言模型能够预测下一个单词,这种预测是基于文本训练数据。

例子:图中提供了一个故事的开头:“Once upon a time, there was a unicorn that lived in a magical forest with all her unicorn friends(中文释义:从前,有一只独角兽和她所有的独角兽朋友住在魔法森林里)”,这展示了模型如何根据给定的文本继续生成故事。问答能力:它能够回答基础的问题,例如“法国的首都是什么?”,但它可能会产生问题文本,如有害输出,这些输出与基础语言模型的性质有关,因为它们仅基于预测下一个最可能的单词,而不是遵循特定的指令。

指令调整语言模型(Instruction Tuned LLM)

  • 功能:这种模型试图遵循指令,它通过在指令上进行微调(fine-tuning,周鸿祎大佬经常讲),并在尝试遵循这些指令时进行优化。

  • 微调方法:使用RLHF(Reinforcement Learning with Human Feedback,中文释义:人类反馈强化学习)进行微调,即结合强化学习和人类反馈。

313682619e9dd0c09d039847e285f742.jpeg

  • 三H原则:帮助(Helpful)、诚实(Honest)、无害(Harmless)。

例子:当问到“法国的首都是什么?”时,指令调整的模型会更准确地回答“法国的首都是巴黎”。

总结来说,图中的主要区别在于基础模型侧重于文本数据的下一个词预测,而指令调整模型则侧重于理解和遵循指令,提供更准确、更有用、更安全的输出。

2、第二讲:使用准则

  • 要点1:好提示词的第一个原则——写出清晰且准确的提示

49d5ff10dc0419905e89ae494f5963a5.png

指令必须清晰的三个核心原因:

核心一——避免歧义:清晰的指令让机器没有猜测的空间,可以直接执行。

核心二——提高效率:清晰的指令可以让机器快速理解并采取行动,节约时间。

核心三——确保结果准确:指令清晰可以确保机器提供的结果是我们所期待的。

aea74f28c19d5c3b3bf88ac4249ac62f.png
  • 要点2:好提示词的第一个原则——给大模型思考的时间

3496e31bfe0627dbaa5f00f825c7cd72.png

要点2所说的“给大模型思考的时间”,其实是在指导我们如何更高效地与大型语言模型(如我)进行交互。

下面是三个核心要点的解读:

119dd85b47b52a5806852075350f1830.jpeg

(1)等待模型回应:

模型需要时间处理你的请求和生成回答,就像你向朋友提问后要等待他们思考并回答一样。

(2)避免打断:

在模型回答之前不要急于提出新问题,这就像不打断别人说话,给对方完成表达的机会。

这个一般模型也不允许。

(3)逐步提问

如果有复杂的问题,可以分步骤提问,让模型逐一解决,就像解难题一样,一步一个脚印来解答。

这是最核心的,大问题务必精准拆解成小问题,且根据回复逐步调优

3、第三讲:提示词不是一步到位的,而通过反复迭代逐步完善的。

97d74eba42d22ccb8dde629b3b253f45.png

吴恩达老师“这幅图展示了一个名为“迭代式提示开发”的循环流程图,它代表一个反馈循环,用于改进和完善提示(可能是编程、数据输入或任何需要精确指示的场合)的质量。流程由四个主要部分组成:

eb3db229a52ecdae9d9c8e8c692a14da.jpeg

1、Idea(想法): 这是流程的开始阶段,你需要有一个初始想法或设计,这将成为你的起始点。

2、Implementation (code/data) Prompt(实现(代码/数据)提示): 根据想法,你会创建一个初步的提示,如果是编程领域,可能是编写代码或准备数据输入。

3、Experimental result(实验结果): 使用你的提示进行实验后,你将获得某些结果,这些结果可能会或不会符合你的预期。

4、Error Analysis(错误分析): 如果结果不符合预期,你需要进行错误分析,查找为什么会出现这样的结果,可能是提示不够清晰、具体或存在逻辑错误。

这个过程是迭代的,意味着你会不断重复这个循环,每一次都根据之前的反馈来调整和改进你的提示,直到实验结果符合你的预期。

图下方的“Prompt guidelines”列出了优化提示时应遵循的指导原则:

1、Be clear and specific(要清晰和具体): 提示需要有足够的详细信息,避免歧义——这点反复强调过了。

2、Analyze why result does not give desired output(分析为什么结果不符合预期输出): 当结果不如意时,深入分析原因(模型会分析,咱们也不要坐等,要结合经验进行分析),理解导致结果偏差的因素。

3、Refine the idea and the prompt(改进想法和提示): 根据分析结果调整你的想法和提示。

4、Repeat(重复): 不断重复这一过程(反复迭代),每次都尝试提高提示的有效性。

这个流程是设计思维和敏捷开发的典型,强调持续改进和适应性。

4、第四讲:最兴奋的功能——文本总结

为大段文本形成摘要,以便我们快速的获取信息。

新版GPT4最多能让用户输入3万2千token(大概50页英文文字长度,网上说法大约25000字)。

5、第五讲:模型推理:

省去了早期开发需要自己训练模型的工作,现在一个API搞定!

49414c772b6fcf4b0b601abf71b68e2d.png

6、第六讲:格式转化 Transforming

cac746cff1da136ac8736f055e1fa318.png
  • Html 转 JSON等各种转换:原来咱们用复杂的正则,现在大模型API快速搞定。

  • 校对写的所有内容:论文、评论、文稿等。

  • 支持各种语言的翻译

  • GPT4 的图片转文本,文本转图片功能也非常强大。

af4232a59827e674db38142b6c928689.jpeg

7、第7讲:文本扩写

31331db014e5874342d29b3fb893daf2.png
  • Chatgpt可以作为头脑风暴的伙伴,基于我们的提示词展开文本扩写。

  • 建议负责任的使用,比如:不要生成垃圾邮件。

  • 可用于文档助理,比如:邮件助理。

b21616a11d8bcb1744d9d62a1b0db3b4.jpeg

8、第8讲:自定义聊天机器人

623a4b8c8f10867618a0219d49e68ae6.png

用途举例:

  • AI 客服助理;

  • 餐厅AI接单员

等等......

注意:角色的设定很重要。

9、小结

4738237a8420a8775faf1daaa4115a86.png

9.1 写出好的提示词的两个核心要点

  • 1、写出清晰和具体指令的重要性

  • 2、给予模型足够的时间来“思考”。

9.2 迭代式提示开发

这是一种通过不断优化和细化提示来改进模型响应的方法。

9.3 模型的几项能力

  • 总结

  • 推断

  • 转换

  • 扩展信息。

这些能力在构建聊天机器人时尤为重要,它们使得机器人能够处理各种任务,从理解和回应用户输入到生成新的内容。

5288e5a260f6cca6a545b567bf49175f.png

模型非常有趣,可以放心去玩!!——咱们就是得多用,才能知道怎么更好得使用用!

0e6a072f87049d3d7f3243353ecb36f6.jpeg

10、中英文字母视频地址

https://www.bilibili.com/video/BV1s24y1F7eq

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/452042.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ARM64汇编06 - 基本整型运算指令

ADD (immediate) 将 Xn 与 imm 相加,结果赋值给 Xd,imm 是无符号数,范围为 0 - 4095。 shift 是对 imm 进行移位,shift 为 0 的时候,表示左移 0 位,即不变。shift 为 1 的时候,表示左移12 位&a…

【漏洞复现】大华智慧园区综合管理平台SQL注入漏洞

Nx01 产品简介 大华智慧园区综合管理平台是一款综合管理平台,具备园区运营、资源调配和智能服务等功能。该平台旨在协助优化园区资源分配,满足多元化的管理需求,同时通过提供智能服务,增强使用体验。 Nx02 漏洞描述 大华智慧园区…

pytest生成allure的报告

首先要下载安装配置allure allure serve ./outputs/allure_report 可以生成html的文件自动在默认浏览器中打开

期货开户市场的风险在哪里?

期货市场的风险在哪里?强平和穿仓是什么? 期货市场是一个自带杠杆的市场,简单理解就是我们只需要用10W就能买到价值100万的商品。期货主要的风险来源于仓位风险和交割风险,仓位风险就是我们是采用满仓还是轻仓方式交易。比如我们…

Linux内核之module_param_named宏代码实例(二十七)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…

微信小程序开发系列(二十九)·界面交互API·loading 提示框、showModal模态对话框、showToast消息提示框

目录 1. loading 提示框 1. 1 wx.showLoading()显示loading提示框 1.2 wx.hideLoading()关闭 loading 提示框 2. showModal 模态对话框 3. showToast 消息提示框 小程序提供了一些用于界面交互的 API,例如:loading 提示框、消息提示框、模态对…

数据库管理-第160期 Oracle Vector DB AI-11(20240312)

数据库管理160期 2024-03-12 数据库管理-第160期 Oracle Vector DB & AI-11(20240312)1 向量的函数操作to_vector()将vector转换为标准值vector_norm()vector_dimension_count()vector_dimension_format() 2 将向量转换为字符串或CLOBvector_seriali…

ChatGPT发了消息没有反应,并且搜索框变空是怎么回事?怎样解决?

最近许多用户反映使用ChatGPT时发了消息没有反应,并且搜索框变空了导致无法使用,接下来闪电发卡就分析一下是什么原因。 根本原因:是因为官方前端更新,后端接口部分报错,老用户使用Alpha测试中文语言导致。 解决方法&a…

【数据挖掘】实验1:R入门(内含详细R和RStudio安装教程)

实验1:R入门 一:实验目的与要求 1:根据上课PPT内容,掌握课堂知识并进行代码练习操作,提供练习过程和结果。 2:可COPY代码运行结果直接提交,如涉及到输出图等可截图。 二:实验内容 …

自建GitLab代码仓库ssh访问地址为localhost修改成域名

ssh改localhost为域名 抛出问题配置过程效果展示 抛出问题 自建的GitLab,代码仓库ssh访问地址为localhost,http地址显示域名没问题,就很奇怪。 找了很久帖子发现这个访问地址不在/etc/gitlab/gitlab.rb的系统配置中。 还有个帖子让改/etc/gi…

游戏开发中的坑之十三 Lut贴图相关问题

1.网上下载的或者游戏截帧得到的Lut贴图贴上之后可能效果如下,需要在PS里垂直方向反转一下贴图。 2.相关设置: (1)取消勾选sRGB; (2)像素为1024x32或者512x16; (3&#…

学习笔记-华为IPD转型2020:2,IPD的核心思想

2,IPD的核心思想 以客户为导向:应该开发什么产品? 应该开发哪些产品?华为的“基本法”规定,其目的是为客户服务(Huawei,1998)。然而,在IPD实施后,对这种以客…

微信小程序开发系列(三十)·小程序本地存储API·同步和异步的区别

目录 1. 同步API 1.1 getStorageSync存储API 1.2 removeStorageSync获取数据API 1.3 removeStorageSync删除 1.4 clearStorageSync清空 2. 异步API 2.1 setStorage存储API 2.2 getStorage获取数据API 2.3 removeStorage删除API 2.4 clearStorage清空 3. …

YOLOv8改进 | 图像去雾 | 利用图像去雾网络AOD-PONO-Net网络增改进图像物体检测

一、本文介绍 本文给大家带来的改进机制是利用AODNet图像去雾网络结合PONO机制实现二次增强,我将该网络结合YOLOv8针对图像进行去雾检测(也适用于一些模糊场景,图片不清晰的检测),同时本文的内容不影响其它的模块改进…

网康科技 NS-ASG 应用安全网关 SQL注入漏洞复现(CVE-2024-2330)

0x01 产品简介 网康科技的NS-ASG应用安全网关是一款软硬件一体化的产品,集成了SSL和IPSec,旨在保障业务访问的安全性,适配所有移动终端,提供多种链路均衡和选择技术,支持多种认证方式灵活组合,以及内置短信认证、LDAP令牌、USB KEY等多达13种认证方式。 0x02 漏洞概述 …

Redis底层数据结构之String

文章目录 1. 前提回顾2. RedisObject三大数据类型简介3. SDS字符串4. SDS字符串源码分析5. 总结 1. 前提回顾 前面我们说到redis的String数据结构在底层有多种编码方式。例如我们执行下面两条语句 set k1 v1 set age 17我们查看类型,发现这类型都是String类型 我们…

【力扣精选算法100道】——二进制求和

LCR 002. 二进制求和 - 力扣(LeetCode) 目录 🎈了解题意 🎈算法分析 🚩cur1>0 🚩cur2>0 🚩t 🎈实现代码 🎈了解题意 遵循二进制加法法则,如果俩…

工具篇--分布式定时任务springBoot 整合 elasticjob使用(3)

文章目录 前言一、Springboot 整合:1.1 引入jar:1.2 配置zookeeper 注册中心:1.3 定义job 业务类:1.4 job 注册到zookeeper:1.5 项目启动:1.5.1 zookeeper 注册中心实例:1.5.2 任务执行日志输出…

【数据挖掘】练习1:R入门

课后作业1:R入门 一:习题内容 1.要与R交互必须安装Rstudio,这种说法对不对? 不对。虽然RStudio是一个流行的R交互集成开发环境,但并不是与R交互的唯一方式。 与R交互可以采用以下几种方法: 使用R Conso…

AHU 汇编 实验六

一、实验名称:实验6 输入一个16进制数,把它转换为10进制数输出 实验目的: 培养汇编中设计子程序的能力 实验过程: 源代码: data segmentbuff1 db Please input a number(H):$buff2 db 30,?,30 dup(?),13,10buff3 …