【机器学习300问】33、决策树是如何进行特征选择的?

        还记得我在【机器学习300问】的第28问里谈到的,看决策树的定义不就是if-else语句吗怎么被称为机器学习模型?其中最重要的两点就是决策树算法要能够自己回答下面两问题

  • 该选哪些特征 == 特征选择
  • 该选哪个阈值 == 阈值确定

        今天这篇文章承接上文,继续深入的讲讲决策树是如何进行特征选择的?如果没有看上篇文章的友友可以点个链接哦:

【机器学习300问】28、什么是决策树?icon-default.png?t=N7T8http://t.csdnimg.cn/Tybfj

一、看一个猫咪二分类的例子

        假设你正在教一群小朋友在公园里快速分辨出哪些动物是猫,哪些是狗。现在你们面前有一大堆动物的照片,每张照片都包含了三个特征,比如“耳朵形状”、“脸是不是圆的”、“有没有胡须”。让我们试着用决策树算法来构造一颗树,先只构造根节点和左右子树。

图1

 选择耳朵是竖起来还是塌下去这个特征,我们把10个样本分成了两个子树。图中p代表猫猫出现的概率(或占比),H是信息熵函数。

二、什么是信息熵?

        首先,我们得理解信息熵的概念,信息熵是衡量一个随机变量不确定性的度量。就像孩子们开始时对所有照片的不确定性。如果照片中猫和狗的数量各占一半,那么不确定性最高,就好比每个小朋友随机猜的话,正确率只有50%。这个不确定性可以用数学上的熵来量化:

H(D) = -\sum_{i}^{}p_{i}log_{2}(p_{i})

其中 D 表示数据集,p_i是类别 i 出现的概率。如果还是有点困惑的话,我们画一个图并配合一些例子来进一步解释信息熵的概念。

图2

(1)p=0.5    H=1的情况

        这张图是信息熵的曲线图,可以看到在p=0.5的时候,信息熵最大意味着此时对于这张图片是猫咪还是小狗最不确定。也就是说是猫的可能性为50%,是狗的可能性也是50%

(2)p=0.83    H=0.65的情况

        假设p=0.83图中可以看出H(0.8)=0.65,这种情况是说,6个动物图片中有5个是小猫1个是小狗,那么我比较有把握的说和这6张图片类似的动物图片,我蛮确定它是小猫,有多确定它是小猫呢?有0.65的确定性。

(3)p=1    H=0的情况

        假设p=1,从图中可以看出H=0,这种情况是说按照某种特征来区分猫狗,分出来一边全是猫咪,一边全是小狗,这意味着数据集中的不确定性最小(不确定性为零)

(4)总结一下什么是信息熵

  • 信息熵是衡量一个随机变量不确定性的度量
  • 当某个事件发生完全确定时(概率为1或0),信息熵为0
  • 当事件发生的不确定性最高,所有可能结果的概率相同时,对于二元事件(如猫狗分类),信息熵达到最大值1

三、什么是信息增益?

        简单说信息增益就是划分前的信息熵减去条件熵,表示使用该特征后不确定性减少的程度。

图3

(1)加权平均信息熵

        在图3中,用耳朵的形状进行划分后,左右两个子树的信息熵可以单独被计算出来,一个是H(0.8)=0.72另一个是H(0.2)=0.72,这两个数代表了两个子树他们的不确定性,可是我现在想知道的是用耳朵的形状进行划分这种策略所到账的不确定性。所以我可以使用加权平均的方法将左右两个合在一起计算得到这种特征用于根节点决策所导致不确定性:

w^{left}H(p_{1}^{left})+w^{right}H(p_{1}^{right})

        其中的w就是权重,w具体是指子树的样本数量占总样本数量的比例,p具体是指猫出现在子树中的概率。这样我们就得到了采取某种特征进行分类的策略会导致多少不确定性。才能判断出这个特征选的好不好。

(2)信息增益公式

        但这还不够,因为我们要思考这个策略好不好,主要不是看当下的H值,而是看他相较于上一次减少了多少不确定性,这样做更有利于我们判断到底选哪个特征做根节点好,所以我们得用前一次的不确定性减去这一次的不确定性,得出来的就是信息增益(根节点):

IG=H(p_{1}^{root})-[w^{left}H(p_{1}^{left})+w^{right}H(p_{1}^{right})]

        写成更一般(任意决策节点)的公式就是: 

IG(D, f) = H(D) - \sum_{i=1}^{m} \frac{|D_i|}{|D|} H(D_i)

符号含义
IG(D, f)表示在给定特征 f 的条件下,数据集D的信息增益
H(D)数据集的原始信息熵
D_i按特征f 的第 i 个值划分后的子集
\frac{|D_i|}{|D|}子集大小占总数据集大小的比例
H(D_i)子集的信息熵

四、决策树是如何进行特征选择的?

        具体选择的流程:

  1. 计算划分前的数据集熵(即原始不确定性)。
  2. 对于每一个特征,比如“耳朵形状”,按照这个特征把数据集划分为不同的子集。
  3. 分别计算每个子集的信息熵,并根据子集内样本数目的比例加权求和。
  4. 计算出信息增益,信息增益就是划分前的熵减去条件熵,表示使用该特征后不确定性减少的程度。
  5. 对比每一个特征计算出来的信息增益,选择那个信息增益最大的特征!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/451857.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

1137. 第N个泰波那契数- 力扣

1. 题目 泰波那契序列 Tn 定义如下: T0 0, T1 1, T2 1, 且在 n > 0 的条件下 Tn3 Tn Tn1 Tn2 给你整数 n,请返回第 n 个泰波那契数 Tn 的值。 2. 示例 3. 分析 1. 状态表示:dp[i]表示:第i个泰波那契数的值 2. 状态转移…

python疑难杂症(10)---Python函数def的定义分类,包括内置函数、外置函数、匿名函数、闭包函数、生成器函数等

本部分详细讲解Python函数的定义、常见的函数类型,尤其是特色函数包括内置函数、外置函数、匿名函数、闭包函数、生成器函数等以及用法。后续将对这类函数重点讲解使用方法。 函数定义: 函数是大多数编程语言使用的一个概念,函数是一段具有…

下载BenchmarkSQL并使用BenchmarkSQL查看OceanBase 的执行计划

下载BenchmarkSQL并使用BenchmarkSQL查看OceanBase 的执行计划 一、什么是BenchmarkSQL二、下载BenchmarkSQL三、使用BenchmarkSQL查看OceanBase 的执行计划 一、什么是BenchmarkSQL BenchmarkSQL是一个开源的数据库基准测试工具,可以用来评估数据库系统的性能&…

基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的草莓成熟度检测系统详解(深度学习模型+UI界面+Python代码+训练数据集)

摘要:本研究介绍了一个使用深度学习技术对草莓成熟度进行检测的系统,它采用了最新的YOLOv8算法,以及YOLOv7、YOLOv6、YOLOv5等前版本的算法,并对它们进行了性能对比。该系统能够在不同媒介上——如图像、视频文件、实时视频流和批…

28 批量归一化【李沐动手学深度学习v2课程笔记】(备注:这一节讲的很迷惑,很乱)

目录 1.批量归一化 1.1训练神经网络时出现的挑战 1.2核心思想 1.3原理 2.批量规范化层 2.1 全连接层 2.2 卷积层 2.3 总结 3. 代码实现 4. 使用批量规范化层的LeNet 5. 简明实现 1.批量归一化 现在主流的卷积神经网络几乎都使用了批量归一化 批量归一化是一种流行且…

Scrapy 爬虫框架

网络爬虫框架scrapy (配置型爬虫) 什么是爬虫框架? 爬虫框架是实现爬虫功能的一个软件结构和功能组件集合爬虫框架是个半成品,帮助用户实现专业网络爬虫 scrapy框架结构("52"结构) spider: 解析downloader返回的响…

【读论文】【精读】3D Gaussian Splatting for Real-Time Radiance Field Rendering

文章目录 1. What:2. Why:3. How:3.1 Real-time rendering3.2 Adaptive Control of Gaussians3.3 Differentiable 3D Gaussian splatting 4. Self-thoughts 1. What: What kind of thing is this article going to do (from the a…

传输层协议介绍(tcp,udp),可靠性和不可靠性

目录 传输层协议 介绍 tcp协议 介绍 面向连接 可靠性 面向字节流 udp协议 介绍 无连接 不可靠 面向数据报 可靠和不可靠 可靠 不可靠 传输层协议 介绍 传输层是计算机网络体系结构中的第四层,它负责在网络中的不同主机之间提供端到端的数据传输 传输…

ARMv8架构特殊寄存器介绍-1

1,ELR寄存器(Exception Link Register ) The Exception Link Register holds the exception return address。 异常链接寄存器保存异常返回地址。最常用也很重要。 2,SPSR(Saved Process Status Register)…

PDF 文件与其他文档格式相比有哪些优势?

PDF文件与其他文档格式相比,具有许多明显的优势。首先,PDF是一种跨平台的文档格式,这意味着无论在哪种操作系统或设备上,用户都可以打开和查看PDF文件,而无需担心格式不兼容的问题。这种跨平台性使得PDF文件在办公、学…

Centos7安装postgresql14步骤

1、进入网址 https://www.postgresql.org/download/ 2、按步骤执行 # Install the repository RPM: sudo yum install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-7-x86_64/pgdg-redhat-repo-latest.noarch.rpm# Install PostgreSQL: sudo yum install -y…

基于springboot+vue的线上教育系统(源码+论文)

目录 前言 一、功能设计 二、功能实现 三、库表设计 四、论文 前言 现在大家的生活方式正在被计算机的发展慢慢改变着,学习方式也逐渐由书本走向荧幕,我认为这并不是不能避免的,但说实话,现在的生活方式与以往相比有太大的改变,人们的娱乐方式不仅仅…

PHP立体安全攻击向量:保护应用程序的关键挑战

PHP立体安全攻击向量:保护应用程序的关键挑战 PHP作为一种广泛使用的服务器端脚本语言,拥有庞大的用户群体和丰富的生态系统。然而,随着互联网的发展,网络安全问题也变得愈发严重。本文将深入探讨PHP的立体安全攻击向量&#xff0…

FPGA高端项目:FPGA基于GS2971+GS2972架构的SDI视频收发+图像缩放,提供3套工程源码和技术支持

目录 1、前言免责声明 2、相关方案推荐本博已有的 SDI 编解码方案本方案的SDI接收发送本方案的SDI接收纯verilog图像缩放纯verilog多路视频拼接应用本方案的SDI接收HLS图像缩放HLS多路视频拼接应用本方案的SDI接收OSD动态字符叠加输出应用本方案的SDI接收HLS多路视频融合叠加应…

jupyter 修改文件保存位置 步骤

一、找到配置文件位置 打开Anaconda Prompt,输入: jupyter notebook --generate-config 根据得到的路径,以记事本方式打开配置文件 二、修改路径 在文件中输入: c.NotebookApp.notebook_dir E:\\deepLearning\\Jupyter_files…

SQL-2

• What have we achieved so far using SELECT ? — Retrieve data from all the rows and columns (whole table) — Retrieve data from all the rows and select columns — Retrieve data from select rows and columns • Sometimes we want to re-format the output fr…

​扩散模型(Diffusion Model)详解:直观理解、数学原理、PyTorch 实现​

在过去的大半年里,以Stable Diffusion为代表的AI绘画是世界上最为火热的AI方向之一。或许大家会有疑问,Stable Diffusion里的这个"Diffusion"是什么意思?其实,扩散模型(Diffusion Model)正是Stable Diffusion中负责生成…

【Preprocessing数据预处理】之Scaler

在机器学习中,特征缩放是训练模型前数据预处理阶段的一个关键步骤。不同的缩放器被用来规范化或标准化特征。这里简要概述了您提到的几种缩放器: StandardScaler StandardScaler 通过去除均值并缩放至单位方差来标准化特征。这种缩放器假设特征分布是正…

让生活更加精致的APP?

晚上好,今天博主来介绍几款帮助你条理生活的APP,让你的生活更加精致,充满仪式感。 一.格志日记 一款以“格子”的方式记录日记的APP,非常简单明了,用户可以依据自己的喜好,来自由定义或者删除格…

Qt/C++音视频开发69-保存监控pcm音频数据到mp4文件/监控录像/录像存储和回放/264/265/aac/pcm等

一、前言 用ffmpeg做音视频保存到mp4文件,都会遇到一个问题,尤其是在视频监控行业,就是监控摄像头设置的音频是PCM/G711A/G711U,解码后对应的格式是pcm_s16be/pcm_alaw/pcm_mulaw,将这个原始的音频流保存到mp4文件是会…