【读论文】【精读】3D Gaussian Splatting for Real-Time Radiance Field Rendering

文章目录

    • 1. What:
    • 2. Why:
    • 3. How:
      • 3.1 Real-time rendering
      • 3.2 Adaptive Control of Gaussians
      • 3.3 Differentiable 3D Gaussian splatting
    • 4. Self-thoughts

1. What:

What kind of thing is this article going to do (from the abstract and conclusion, try to summarize it in one sentence)

To simultaneously satisfy the requirements of efficiency and quality, this article begins by establishing a foundation with sparse points using 3D Gaussian distributions to preserve desirable space. It then progresses to optimizing anisotropic covariance to achieve an accurate representation. Lastly, it introduces a cutting-edge, visibility-aware rendering algorithm designed for rapid processing, thereby achieving state-of-the-art results in the field.

2. Why:

Under what conditions or needs this research plan was proposed (Intro), what problems/deficiencies should be solved at the core, what others have done, and what are the innovation points? (From Introduction and related work)

Maybe contain Background, Question, Others, Innovation:

Three aspects of related work can explain this question.

  1. Traditional reconstructions such as SfM and MVS need to re-project and
    blend the input images into the novel view camera, and use the
    geometry to guide this re-projection(From 2D to 3D).

    Sad: Cannot completely recover from unreconstructed regions, or from “over-reconstruction”, when MVS generates inexistent geometry.

  2. Neural Rendering and Radiance Fields

    Neural rendering represents a broader category of techniques that leverage deep learning for image synthesis, while radiance field is a specific technique within neural rendering focused on the scene representation of light and color in 3D spaces.

  • Deep Learning was mainly used on MVS-based geometry before, which is also its major drawback.

  • Nerf is along the way of volumetric representation, which introduced positional encoding and importance sampling.

  • Faster training methods focus on the use of spatial data structures to store (neural) features that are subsequently interpolated during volumetric ray-marching, different encodings, and MLP capacity.

  • Today, notable works include InstantNGP and Plenoxels both rely on Spherical Harmonics.

    Understand Spherical Harmonics as a set of basic functions to fit a geometry in a 3D spherical coordinate system.

    球谐函数介绍(Spherical Harmonics) - 知乎 (zhihu.com)

  1. Point-Based Rendering and Radiance Fields
  • The methods in human performance capture inspired the choice of 3D Gaussians as scene representation.
  • Point-based and spherical rendering is achieved before.

3. How:

请添加图片描述

Through the Gradient Flow in this paper’s pipeline, we are trying to connect Part4, 5, and 6 in this paper.

Firstly, start from the loss function, which is combined by a L 1 {\mathcal L}_{1} L1 loss and a S S I M SSIM SSIM index, just as shown below:

L = ( 1 − λ ) L 1 + λ L D − S S I M . (1) {\mathcal L}=(1-\lambda){\mathcal L}_{1}+\lambda{\mathcal L}_{\mathrm{D-SSIM}}.\tag{1} L=(1λ)L1+λLDSSIM.(1)

It found a relation between the actual image and the rendering image. So to finish the optimization, we need to dive into the process of rendering. From the chapter on related work, we know Point-based α \alpha α-blending and NeRF-style volumetric rendering share essentially the same image formation model. That is

C = ∑ i = 1 N T i ( 1 − exp ⁡ ( − σ i δ i ) ) c i w i t h T i = exp ⁡ ( − ∑ j = 1 i − 1 σ j δ j ) . (2) C=\sum_{i=1}^{N}T_{i}(1-\exp(-\sigma_{i}\delta_{i}))c_{i}\quad\mathrm{with}\quad T_{i}=\exp\left(-\sum_{j=1}^{i-1}\sigma_{j}\delta_{j}\right).\tag{2} C=i=1NTi(1exp(σiδi))ciwithTi=exp(j=1i1σjδj).(2)

And this paper actually uses a typical neural point-based approach just like (2), which can be represented as:

C = ∑ i ∈ N c i α i ∏ j = 1 i − 1 ( 1 − α j ) (3) C=\sum_{i\in N}c_{i}\alpha_{i}\prod_{j=1}^{i-1}(1-\alpha_{j}) \tag{3} C=iNciαij=1i1(1αj)(3)

From this formulation, we can know what the representation of volume should contain the information of color c c c and transparency α \alpha α. These are attached to the gaussian, where Spherical Harmonics was used to represent color, just like Plenoxels. The other attributes used are the position and covariance matrix. So, now we have introduced the four attributes to represent the scene, that is positions 𝑝, 𝛼, covariance Σ, and SH coefficients representing color 𝑐 of each Gaussian.
After knowing the basic elements we need to use, now let’s work backward, starting with rendering, which was addressed in the author’s previous paper.

3.1 Real-time rendering

This method is independent of the propagation of gradients but is critical for real-time performance, which was published in the author’s paper before.
在这里插入图片描述

In the previous game, someone had tried to model the world in ellipsoid and render it. This is the same as the render process of Gaussian splatting. But the latter uses lots of techniques in the utilization of threads and GPU.

  • Firstly, it starts by splitting the screen into 16×16 tiles and then proceeds to cull 3D Gaussians against the view frustum and each tile, only keeping Gaussians with a 99% confidence interval intersecting the view frustum.
  • Then instantiate each Gaussian according to the number of tiles they overlap and assign each instance a key that combines view space depth and tile ID.
  • Then sort Gaussians based on these keys using a single fast GPU Radix sort.
  • Finally, launching one thread block for each tile, for a given pixel, accumulate color and transparency values by traversing the lists front-to-back, until α \alpha α goes to one.

3.2 Adaptive Control of Gaussians

In the process of fitting gaussian to the scene, we should utilize the number and volume of gaussian to strengthen the representation of the scene. It contained two methods named clone and split, as shown below.

在这里插入图片描述

These were judged by the view-space positional gradients. Both under-reconstruction and over-construction have large view-space positional gradients. We will clone or split the gaussian according to different conditions.

3.3 Differentiable 3D Gaussian splatting

We have known the process of rendering and control of gaussian. Finally, we will talk about how to backward the gradients to where we can optimize. This is mainly about the processing of Gaussian function.

The basic simplified formulation of 3D Gaussain can be represented as:

G ( x ) = e − 1 2 ( x ) T Σ − 1 ( x ) . (4) G(x)=e^{-\frac{1}{2}(x)^{T}\Sigma^{-1}(x)}.\tag{4} G(x)=e21(x)TΣ1(x).(4)

We will use α \alpha α-blending to combine it to generate the rendering picture, so that we can calculate the loss function and finish the optimization. So now we need to know how to optimize and calculate the gradients of Gaussian.

When rasterizing, the three-dimensional scene needs to be transformed into a two-dimensional space. The author hopes that the 3D Gaussian will maintain its distribution during the transformation (otherwise, if the raster finish has nothing to do with Gaussian, all the efforts will be in vain). So we should choose a method to transfer the covariance matrix to camera coordinate without change the affine relation. That is

Σ ′ = J W Σ W T J T , (5) \Sigma'=JW\Sigma W^{T}J^{T},\tag{5} Σ=JWΣWTJT,(5)

where J J J is the Jacobian of the affine approximation of the projective transformation.

Another problem is that the covariance matrix must be semi-definite. So we use a scaling matrix 𝑆 and rotation matrix 𝑅 to assure it. That is

Σ = R S S T R T (6) \Sigma=RSS^{T}R^{T}\tag{6} Σ=RSSTRT(6)

And then we can use a 3D vector 𝑠 for scaling and a quaternion 𝑞 to represent rotation. The gradients will backward to them. These are the whole process of optimization.

4. Self-thoughts

  1. Summary of different representation
  • Explicit representation: Mesh, Point Cloud
  • Implicit representation
    • Volumetric representation: Nerf

      The density value returned by the sample points reflects whether there is geometric occupancy here.

    • Surface representation: SDF(Signed Distance Function)

      Outputs the distance to the nearest surface in the space from this point, where a positive value indicates outside the surface, and a negative value indicates inside the surface.

Refer:

[1]: 3D Gaussian Splatting:用于实时的辐射场渲染-CSDN博客

[2]: 【三维重建】3D Gaussian Splatting:实时的神经场渲染-CSDN博客

[3]: 3D Gaussian Splatting中的数学推导 - 知乎 (zhihu.com)

[4]: [NeRF坑浮沉记]3D Gaussian Splatting入门:如何表达几何 - 知乎 (zhihu.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/451846.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

传输层协议介绍(tcp,udp),可靠性和不可靠性

目录 传输层协议 介绍 tcp协议 介绍 面向连接 可靠性 面向字节流 udp协议 介绍 无连接 不可靠 面向数据报 可靠和不可靠 可靠 不可靠 传输层协议 介绍 传输层是计算机网络体系结构中的第四层,它负责在网络中的不同主机之间提供端到端的数据传输 传输…

ARMv8架构特殊寄存器介绍-1

1,ELR寄存器(Exception Link Register ) The Exception Link Register holds the exception return address。 异常链接寄存器保存异常返回地址。最常用也很重要。 2,SPSR(Saved Process Status Register)…

PDF 文件与其他文档格式相比有哪些优势?

PDF文件与其他文档格式相比,具有许多明显的优势。首先,PDF是一种跨平台的文档格式,这意味着无论在哪种操作系统或设备上,用户都可以打开和查看PDF文件,而无需担心格式不兼容的问题。这种跨平台性使得PDF文件在办公、学…

Centos7安装postgresql14步骤

1、进入网址 https://www.postgresql.org/download/ 2、按步骤执行 # Install the repository RPM: sudo yum install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-7-x86_64/pgdg-redhat-repo-latest.noarch.rpm# Install PostgreSQL: sudo yum install -y…

基于springboot+vue的线上教育系统(源码+论文)

目录 前言 一、功能设计 二、功能实现 三、库表设计 四、论文 前言 现在大家的生活方式正在被计算机的发展慢慢改变着,学习方式也逐渐由书本走向荧幕,我认为这并不是不能避免的,但说实话,现在的生活方式与以往相比有太大的改变,人们的娱乐方式不仅仅…

PHP立体安全攻击向量:保护应用程序的关键挑战

PHP立体安全攻击向量:保护应用程序的关键挑战 PHP作为一种广泛使用的服务器端脚本语言,拥有庞大的用户群体和丰富的生态系统。然而,随着互联网的发展,网络安全问题也变得愈发严重。本文将深入探讨PHP的立体安全攻击向量&#xff0…

FPGA高端项目:FPGA基于GS2971+GS2972架构的SDI视频收发+图像缩放,提供3套工程源码和技术支持

目录 1、前言免责声明 2、相关方案推荐本博已有的 SDI 编解码方案本方案的SDI接收发送本方案的SDI接收纯verilog图像缩放纯verilog多路视频拼接应用本方案的SDI接收HLS图像缩放HLS多路视频拼接应用本方案的SDI接收OSD动态字符叠加输出应用本方案的SDI接收HLS多路视频融合叠加应…

jupyter 修改文件保存位置 步骤

一、找到配置文件位置 打开Anaconda Prompt,输入: jupyter notebook --generate-config 根据得到的路径,以记事本方式打开配置文件 二、修改路径 在文件中输入: c.NotebookApp.notebook_dir E:\\deepLearning\\Jupyter_files…

SQL-2

• What have we achieved so far using SELECT ? — Retrieve data from all the rows and columns (whole table) — Retrieve data from all the rows and select columns — Retrieve data from select rows and columns • Sometimes we want to re-format the output fr…

​扩散模型(Diffusion Model)详解:直观理解、数学原理、PyTorch 实现​

在过去的大半年里,以Stable Diffusion为代表的AI绘画是世界上最为火热的AI方向之一。或许大家会有疑问,Stable Diffusion里的这个"Diffusion"是什么意思?其实,扩散模型(Diffusion Model)正是Stable Diffusion中负责生成…

【Preprocessing数据预处理】之Scaler

在机器学习中,特征缩放是训练模型前数据预处理阶段的一个关键步骤。不同的缩放器被用来规范化或标准化特征。这里简要概述了您提到的几种缩放器: StandardScaler StandardScaler 通过去除均值并缩放至单位方差来标准化特征。这种缩放器假设特征分布是正…

让生活更加精致的APP?

晚上好,今天博主来介绍几款帮助你条理生活的APP,让你的生活更加精致,充满仪式感。 一.格志日记 一款以“格子”的方式记录日记的APP,非常简单明了,用户可以依据自己的喜好,来自由定义或者删除格…

Qt/C++音视频开发69-保存监控pcm音频数据到mp4文件/监控录像/录像存储和回放/264/265/aac/pcm等

一、前言 用ffmpeg做音视频保存到mp4文件,都会遇到一个问题,尤其是在视频监控行业,就是监控摄像头设置的音频是PCM/G711A/G711U,解码后对应的格式是pcm_s16be/pcm_alaw/pcm_mulaw,将这个原始的音频流保存到mp4文件是会…

关于电脑无法开启5G频段热点的解决方案

tips:本文是本着解决校园网开热点后限速的问题的目的,具体情况具体对待。 1.找到设备管理器 右键该选项 2.在新弹出窗口选择首选频带 3.选择首选5GHz频带 确定之后重新连接wifi,重新开启热点,大功告成。 后记:在使用2.4ghz开热点…

细粒度IP定位参文2(Corr-SLG):A street-level IP geolocation method (2021年)

[2]S. Ding, F. Zhao, and X. Luo, “A street-level IP geolocation method based on delay-distance correlation and multilayered common routers,” Secur. Commun. Netw., vol. 2021, no. 1, pp. 1–10, 2021. 智能设备的地理位置可以帮助提供多媒体内容提供商和5G网络中…

基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的行人跌倒检测系统(深度学习+UI界面+完整训练数据集)

摘要:开发行人跌倒检测系统在确保老年人安全方面扮演着至关重要的角色。本篇文章详尽地阐述了如何利用深度学习技术构建一个行人跌倒检测系统,并附上了完整的代码实现。该系统采用了先进的YOLOv8算法,并对YOLOv7、YOLOv6、YOLOv5等先前版本进…

​如何使用 ArcGIS Pro 分析爆炸波及建筑

假设在某栋建筑内发生了爆炸,需要根据爆炸的范围分析出来波及的建筑,对于这一需求,我们可以通过ArcGIS Pro来实现,这里为大家介绍一下分析的方法,希望能对你有所帮助。 数据来源 教程所使用的数据是从水经微图中下载…

MATLAB中的矩阵的重构和重新排列

师从清风 矩阵的重构和重新排列 reshape函数 reshape函数可以改变矩阵的形状,其常用语法为reshape(A,m,n)或者reshape(A,[m,n]),这可以将矩阵A的形状更改为m行n列,前提是转化前后的两个矩阵的元素总数要相同。例如有一个矩阵A,它原来的大小是…

JDBC连接Mysql(executeQuely)3/13

resultset-->executeQuery import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import java.sql.Statement;public class Demo3 {public static void main(String[] args) throws Exception {//1.注册驱动Class.forName("com.mys…

【图论】树上启发式合并

本篇博客参考: Oi Wiki 树上启发式合并算法学习笔记(86): 树上启发式合并 文章目录 基本概念代码实现 基本概念 首先,什么是 启发式合并 ? 有人将其称为“优雅的暴力”,启发式合并就是在合并两个部分的时候,将内容少…