性能指标:QPS、TPS、系统吞吐量理解

一、QPS,每秒查询

QPS:Queries Per Second意思是“每秒查询率”,是一台服务器每秒能够相应的查询次数,是对一个特定的查询服务器在规定时间内所处理流量多少的衡量标准。

互联网中,作为域名系统服务器的机器的性能经常用每秒查询率来衡量。

二、TPS,每秒事务

TPS:是TransactionsPerSecond的缩写,也就是事务数/秒。它是软件测试结果的测量单位。一个事务是指一个客户机向服务器发送请求然后服务器做出反应的过程。客户机在发送请求时开始计时,收到服务器响应后结束计时,以此来计算使用的时间和完成的事务个数。

QPS vs TPS:QPS基本类似于TPS,但是不同的是,对于一个页面的一次访问,形成一个TPS;但一次页面请求,可能产生多次对服务器的请求,服务器对这些请求,就可计入“QPS”之中。如,访问一个页面会请求服务器2次,一次访问,产生一个“T”,产生2个“Q”。

三、RT,响应时间

响应时间:执行一个请求从开始到最后收到响应数据所花费的总体时间,即从客户端发起请求到收到服务器响应结果的时间。

响应时间RT(Response-time),是一个系统最重要的指标之一,它的数值大小直接反应了系统的快慢。

四、并发数

并发数是指系统同时能处理的请求数量,这个也是反应了系统的负载能力。

五、吞吐量

系统的吞吐量(承压能力)与request对CPU的消耗、外部接口、IO等等紧密关联。单个request 对CPU消耗越高,外部系统接口、IO速度越慢,系统吞吐能力越低,反之越高。

系统吞吐量几个重要参数:QPS(TPS)、并发数、响应时间。

QPS(TPS):(Query Per Second)每秒钟request/事务 数量
并发数: 系统同时处理的request/事务数
响应时间:  一般取平均响应时间
理解了上面三个要素的意义之后,就能推算出它们之间的关系:

QPS(TPS)= 并发数/平均响应时间
并发数 = QPS*平均响应时间

六、实际举例

我们通过一个实例来把上面几个概念串起来理解。按二八定律来看,如果每天 80% 的访问集中在 20% 的时间里,这 20% 时间就叫做峰值时间。

公式:( 总PV数 * 80% ) / ( 每天秒数 * 20% ) = 峰值时间每秒请求数(QPS) 
机器:峰值时间每秒QPS / 单台机器的QPS = 需要的机器
1、每天300w PV 的在单台机器上,这台机器需要多少QPS? 

( 3000000 * 0.8 ) / (86400 * 0.2 ) = 139 (QPS)

2、如果一台机器的QPS是58,需要几台机器来支持?

139 / 58 = 3

七、最佳线程数、QPS、RT

1、单线程QPS公式:QPS=1000ms/RT

对同一个系统而言,支持的线程数越多,QPS越高。假设一个RT是80ms,则可以很容易的计算出QPS,QPS = 1000/80 = 12.5
多线程场景,如果把服务端的线程数提升到2,那么整个系统的QPS则为 2*(1000/80) = 25, 可见QPS随着线程的增加而线性增长,那QPS上不去就加线程呗,听起来很有道理,公司也说的通,但是往往现实并非如此。

2、QPS和RT的真实关系

我们想象的QPS、RT关系如下,

 实际的QPS、RT关系如下,

3、最佳线程数量

刚好消耗完服务器的瓶颈资源的临界线程数,公式如下
最佳线程数量=((线程等待时间+线程cpu时间)/线程cpu时间)* cpu数量
特性:

在达到最佳线程数的时候,线程数量继续递增,则QPS不变,而响应时间变长,持续递增线程数量,则QPS开始下降。
每个系统都有其最佳线程数量,但是不同状态下,最佳线程数量是会变化的。
瓶颈资源可以是CPU,可以是内存,可以是锁资源,IO资源:超过最佳线程数-导致资源的竞争,超过最佳线程数-响应时间递增。

好吧,我编不下去了,哈哈。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/451632.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[leetcode~dfs]1261. 在受污染的二叉树中查找元素

给出一个满足下述规则的二叉树: root.val 0 如果 treeNode.val x 且 treeNode.left ! null,那么 treeNode.left.val 2 * x 1 如果 treeNode.val x 且 treeNode.right ! null,那么 treeNode.right.val 2 * x 2 现在这个二叉树受到「污…

02.JavaScript的运算符和语句

JavaScriptt的运算符和语句 一.运算符 算术运算符 数字是用来计算的,比如:乘法 * 、除法 / 、加法 、减法 - 等等,所以经常和算术运算符一起。 算术运算符:也叫数学运算符,主要包括加、减、乘、除、取余&#xff…

python自学7

第二章第一节面向对象 程序的格式都不一样,每个人填写的方式也有自己的习惯,比如收集个人信息,可能有人用字典字符串或者列表, 类的成员方法 类和对象 构造方法 挨个传输值太麻烦了,也没有方便点的,有&…

每日一题——LeetCode2129.将标题首字母大写

方法一 个人方法 将字符串转为数组&#xff0c;遍历数组&#xff0c;对数组的每一个元素&#xff0c;先全部转为小写&#xff0c;如果当前元素长度大于2&#xff0c;将第一个字符转为大写形式 var capitalizeTitle function(title) {titletitle.split( )for(let i0;i<tit…

linux升级gcc版本详细教程

0.前言 一般linux操作系统默认的gcc版本都比较低&#xff0c;例如centos7系统默认的gcc版本为4.8.5。gcc是从4.7版本开始支持C11的&#xff0c;4.8版本对C11新特性的编译支持还不够完善&#xff0c;因此如果需要更好的体验C11以及以上版本的新特性&#xff0c;需要升级gcc到一个…

VC6.0 新建一个C语言文件

一、新建工程 左上角 文件 --> 新建 --> 选择“一个空工程” 点击“完成”&#xff0c;再点击“确定” 二、新建源文件 左上角 文件 --> 新建 --> 点击“确定” 三、输入代码 #include<stdio.h> int main() {printf("Hello World!\n&q…

Vulnhub靶机:Kioptrix_Level1

一、介绍 运行环境&#xff1a;Virtualbox 攻击机&#xff1a;kali&#xff08;192.168.56.101&#xff09; 靶机&#xff1a;Kioptrix_Level1&#xff08;192.168.56.105&#xff09; 目标&#xff1a;获取靶机root权限和flag 靶机下载地址&#xff1a;https://www.vulnh…

GIS学习笔记(四):GIS数据可视化综合(矢量数据)

矢量数据 arcgis的主要可视化工具&#xff1a;属性 符号系统 符号系统 按类别 这里不会涉及到数字的大小因素&#xff0c;只是按照字符的分类去做可视化 “唯一值”的含义 “建筑年代”字段共有10个年份&#xff0c;一个年份也许有多个数据( eg.1990年的建筑有20个)&…

MySQL 事务的原理以及长事务的预防和处置

transaction_isolation 隔离级别 读未提交 读提交 视图是在每个 SQL 语句开始执行的时候创建的 可重复读 视图是在事务启动时创建的&#xff0c;整个事务存在期间都用这个视图 串行化…

【NR 定位】3GPP NR Positioning 5G定位标准解读(十)-增强的小区ID定位

前言 3GPP NR Positioning 5G定位标准&#xff1a;3GPP TS 38.305 V18 3GPP 标准网址&#xff1a;Directory Listing /ftp/ 【NR 定位】3GPP NR Positioning 5G定位标准解读&#xff08;一&#xff09;-CSDN博客 【NR 定位】3GPP NR Positioning 5G定位标准解读&#xff08;…

python读取execl里的图片

正常的读取图片 from openpyxl import load_workbook from PIL import Imagefrom openpyxl import load_workbook wb load_workbook(rC:\Users\Administrator\Downloads\output1111.xlsx) ws wb[wb.sheetnames[0]] for image in ws._images:data image.anchor._fromif image…

接雨水(leetcode hot100)

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 示例 1&#xff1a; 输入&#xff1a;height [0,1,0,2,1,0,1,3,2,1,2,1] 输出&#xff1a;6 解释&#xff1a;上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] …

ST MotorControl Workbench 6.2.1 使用总结

目录 前言 软件安装 根据自己硬件配置参数 生成代码 开发板运行 ​ 总结 前言 好久没有玩ST的电机库了&#xff0c;已经更新到了MotorControl Workbench 6.2.1&#xff0c;6以上的版本比5的版本界面操作有很大的不同&#xff0c;核心算法有些增加。最近体验了一把使用自…

【NR 定位】3GPP NR Positioning 5G定位标准解读(十五)-UL-TDOA 定位

前言 3GPP NR Positioning 5G定位标准&#xff1a;3GPP TS 38.305 V18 3GPP 标准网址&#xff1a;Directory Listing /ftp/ 【NR 定位】3GPP NR Positioning 5G定位标准解读&#xff08;一&#xff09;-CSDN博客 【NR 定位】3GPP NR Positioning 5G定位标准解读&#xff08;…

设计模式 -- 1:简单工厂模式

目录 代码记录代码部分 代码记录 设计模式的代码注意要运用到面向对象的思想 考虑到紧耦合和松耦合 把具体的操作类分开 不让其互相影响&#xff08;注意这点&#xff09; 下面是UML类图 代码部分 #include <iostream> #include <memory> // 引入智能指针的头文…

React 教程

学习主要来源 React 教程 | 菜鸟教程 React 是一个用于构建用户界面的 JAVASCRIPT 库。 React 主要用于构建 UI&#xff0c;很多人认为 React 是 MVC 中的 V&#xff08;视图&#xff09;。 React 起源于 Facebook 的内部项目&#xff0c;用来架设 Instagram 的网站&#xff0…

【ollama】(4):在autodl中安装ollama工具,配置环境变量,修改端口,使用RTX 3080 Ti显卡,测试coder代码生成大模型

1&#xff0c;ollama项目 Ollama 是一个强大的框架&#xff0c;设计用于在 Docker 容器中部署 LLM。Ollama 的主要功能是在 Docker 容器内部署和管理 LLM 的促进者&#xff0c;它使该过程变得非常简单。它帮助用户快速在本地运行大模型&#xff0c;通过简单的安装指令&#xf…

2023年第三届中国高校大数据挑战赛第二场赛题C:用户对博物馆评论的情感分析(附上代码与详细视频讲解)

问题重述&#xff1a; 博物馆是公共文化服务体系的重要组成部分。国家文物局发布&#xff0c; 2021 年我国新增备案博物馆 395 家&#xff0c;备案博物馆总数达 6183 家&#xff0c;排名全球前列&#xff1b;5605 家博物馆实现免费开放&#xff0c;占比达 90%以上&#xff1b;…

plantUML使用指南之序列图

文章目录 前言一、序列图1.1 语法规则1.1.1 参与者1.1.2 生命线1.1.3 消息1.1.4 自动编号1.1.5 注释1.1.6 其它1.1.7 例子 1.2 如何画好 参考 前言 在软件开发、系统设计和架构文档编写过程中&#xff0c;图形化建模工具扮演着重要的角色。而 PlantUML 作为一种强大且简洁的开…

Kafka消费者重平衡

「&#xff08;重平衡&#xff09;Rebalance本质上是一种协议&#xff0c;规定了一个Consumer Group下的所有Consumer如何达成一致&#xff0c;来分配订阅Topic的每个分区」。 比如某个Group下有20个Consumer实例&#xff0c;它订阅了一个具有100个分区的Topic。 正常情况下&…