【C++】反向迭代器仿函数模板进阶

反向迭代器&仿函数&模板进阶

  • 一,反向迭代器
    • 1. 什么是反向迭代器
    • 2. 模拟实现
    • 3. 如何使用
  • 二,仿函数
    • 1. 仿函数的概念
    • 2. 仿函数的用法
  • 三,模板
    • 1. 非类型模板参数
    • 2. 模板的特化
      • 2.1 特化概念
      • 2.2 函数模板特化
      • 2.3 类模板特化
        • 2.3.1 全特化
        • 2.3.2 偏特化
    • 3. 模板分离编译

一,反向迭代器

1. 什么是反向迭代器

在前面的讲解中我们可以利用迭代器来遍历容器,迭代器有正向迭代器和反向迭代器,在前面的模拟实现中我们都实现是正向迭代器,在这里我们来模拟实现一下反向迭代器。

2. 模拟实现

上一讲我们知道了适配器的概念,其可以将底层的容器封装成自己所需的容器。这里反向迭代器的实现也可以用适配器的方式实现。

具体来说就是将反向迭代器写成一种泛型的模板类,通过传入不同容器的正向迭代器来适配出反向迭代器。

template<class Iterator,class Ref,class Ptr>
struct Reverse_iterator {
		
	typedef Reverse_iterator<Iterator, Ref, Ptr> Self;//Ref-->const T&,Ptr-->const T*
	Iterator _cur;

	//...
}

对于其他的重载operator--或者operator++我们也只需要稍作修改即可

template<class Iterator,class Ref,class Ptr>
struct Reverse_iterator {
		
	typedef Reverse_iterator<Iterator, Ref, Ptr> Self;//Ref-->const T&,Ptr-->const T*
	Iterator _cur;

	Reverse_iterator(Iterator lt) 
		:_cur(lt)
	{}

	//前置++
	Self& operator++() {
		--_cur;
		return *this;
	}

	//后置++
	Self& operator++(int) {
		Self tmp = _cur;
		--_cur;
		return *this;
	}

	//前置--
	Self& operator--() {
		++_cur;
		return *this;
	}

	//后置--
	Self& operator--(int) {
		Self tmp = _cur;
		++_cur;
		return *this;
	}

	Ref operator*() {
		Iterator tmp = _cur;
		--tmp;//这里--tmp是为了和正向迭代器对称
		return *tmp;
	}

	Ptr operator->() {
		return &(operator*());
	}

	bool operator!=(const Self& s) {
		return _cur != s._cur;
	}
	bool operator==(const Self& s) {
		return _cur == s._cur;
	}
};

3. 如何使用

以我们先前模拟实现的list为例,我们在list的类中声明反向迭代器时在对应的模板参数传入list的正向迭代器,再实现相应的反向迭代器的相关操作就可以了。

template<class T>
class mylist {
	typedef ListNode<T> Node;//方便阅读
	
public:
	typedef List_Iterator<T,T&,T*> iterator;//写成公有,类外也可以访问
	typedef List_Iterator<T,const T&,const T*> const_iterator;

	typedef Reverse_iterator<iterator, T&, T*> reverse_iterator;
	typedef Reverse_iterator<const_iterator,const T&,const T*> const_reverse_iterator;

注:根据上面写的反向迭代器的适配器模板参数,传入的是list的迭代器,如果要实现其他容器的反向迭代器就传入相应的迭代器。


同时,根据正向迭代器来实现反向迭代器的相应的接口

reverse_iterator rbegin() {
	return reverse_iterator(end());
}

reverse_iterator rend() {
	return reverse_iterator(begin());
}

二,仿函数

1. 仿函数的概念

仿函数其实就是一个可以像函数一样调用的类,这个类需要重载()
在上一讲中我们知道优先队列默认大堆的原因是其默认的仿函数是less,按升序存放,与之对应的是greater,如果传入的是greater则优先队列会是小堆,按降序存放。

下面我们借助模拟实现优先队列来具体讲解仿函数。

2. 仿函数的用法

在上一讲我们直接写了代码来控制向上调整和向下调整是建的大堆还是小堆,这里我们用仿函数来实现

我们先写出这两个仿函数的类,并重载()

template<class T>
class Less {
public:
	bool operator()(const T& x,const T& y) {
		return	x < y;
	}
};

template<class T>
class Greater {
public:
	bool operator()(const T& x, const T& y) {
		return x > y;
	}
};

然后我们将其嵌入到建堆算法中,先定义出这个类的对象,然后在判断时调用这个类,可以看到下面代码中com(_con[parent],_con[child])这句就是调用了仿函数,像函数一样调用的类,

//向上调整
void Adjust_up(int child) {
	Compare com;
	int parent = (child - 1) / 2;
	while (child > 0) {
		//if(_con[child] > _con[parent])
		if (com(_con[parent],_con[child]))//默认大堆 
		{					
			swap(_con[child], _con[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else {
			break;
		}
	}
}

void Adjust_down(size_t parent) {
	Compare com;
	size_t child = parent * 2 + 1;
	while (child < _con.size()) {
		if (child + 1 < _con.size() && com(_con[child],_con[child + 1])) {
			++child;//找到大的那个孩子节点
		}
		//if(_con[parent] < _con[child])
		if (com(_con[parent],_con[child])) {
			swap(_con[child], _con[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else {
			break;
		}
	}
}

三,模板

前面我们讲过模板的基本用法,现在我们来进一步学习一下模板

1. 非类型模板参数

模板参数分类类型形参与非类型形参

类型形参即:出现在模板参数列表中,跟在class或者typename之类的参数类型名称。

非类型形参:就是用一个常量作为类(函数)模板的一个参数,在类(函数)模板中可将该参数当成常量来使用

看下面的代码:这里的 N 就是非类型模板参数

// 定义一个模板类型的静态数组
template<class T, size_t N = 10>
class array
{
public:
	T& operator[](size_t index)
	{
		return _array[index];
	}
	const T& operator[](size_t index)const
	{
		return _array[index];
	}
	size_t size()const
	{
		return _size;
	}
	bool empty()const
	{
		return 0 == _size;
	}
private:
	T _array[N];
	size_t _size;
}

注意:

  1. 浮点数、类对象以及字符串是不允许作为非类型模板参数的。
  2. 非类型的模板参数必须在编译期就能确认结果

2. 模板的特化

2.1 特化概念

通常情况下,使用模板可以实现一些与类型无关的代码,但对于一些特殊类型的可能会得到一些错误的结
果,需要特殊处理,比如:实现了一个专门用来进行小于比较的函数模板

举个例子,看下面的代码:

template<class T>
bool Less(T left, T right)
{
	return left < right;
}

class Date{
public:
	Date(int year,int month,int day)
		:_year(year)
		,_month(month)
		,_day(day)
		{}
	//....
private:
	int _year;
	int _month;
	int _day;
};

int main()
{
	cout << Less(1, 2) << endl; // 可以比较,结果正确
	Date d1(2022, 7, 7);
	Date d2(2022, 7, 8);
	cout << Less(d1, d2) << endl; // 可以比较,结果正确
	Date* p1 = &d1;
	Date* p2 = &d2;
	cout << Less(p1, p2) << endl; // 可以比较,结果错误
	return 0;
}

根据以上的代码可以看出Less绝对多数情况下都可以正常比较,但是在特殊场景下就得到错误的结果。上述示例中,p1指向的d1显然小于p2指向的d2对象,但是Less内部并没有比较p1和p2指向的对象内容,而比较的是p1和p2指针的地址,这就无法达到预期而错误。

此时,就需要对模板进行特化。即在原模板类的基础上,针对特殊类型所进行特殊化的实现方式。


模板特化分为函数模板特化和类模板特化。

2.2 函数模板特化

函数模板的步骤是:

  1. 必须要先有一个基础的函数模板
  2. 关键字template后面接一对空的尖括号<>
  3. 函数名后跟一对尖括号,尖括号中指定需要特化的类型
  4. 函数形参表必须要和模板函数的基础参数类型完全相同,如果不同编译器可能会报一些奇怪的错误

以上面的例子来说,如果想要比较Date的日期,可以堆Less进行特化,调用时会走特化的版本:

template<>
bool Less<Date*>(Date* left, Date* right)
{
	return *left < *right;
}

class Date{
public:
	Date(int year,int month,int day)
		:_year(year)
		,_month(month)
		,_day(day)
		{}
	//....
private:
	int _year;
	int _month;
	int _day;
};

int main()
{
	cout << Less(1, 2) << endl; // 可以比较,结果正确
	Date d1(2022, 7, 7);
	Date d2(2022, 7, 8);
	cout << Less(d1, d2) << endl; // 可以比较,结果正确
	Date* p1 = &d1;
	Date* p2 = &d2;
	cout << Less(p1, p2) << endl; // 可以比较,结果正确
	return 0;
}

但是,有一种便捷的方法,那就是直接重载一个。
一般情况下如果函数模板遇到不能处理或者处理有误的类型,为了实现简单通常都是将该函数直接给出

如下:

bool Less(Date* left, Date* right)
{
	return *left < *right;
}

该种实现简单明了,代码的可读性高,容易书写,因为对于一些参数类型复杂的函数模板,特化时特别给
出,因此函数模板不建议特化。

2.3 类模板特化

特化又分为全特化偏特化

2.3.1 全特化

全特化就是将模板参数全部确定

template<>
class Date<int, char>{
public:
	Date()
	{}
	//....
private:
	int _a1;
	char _a2;
};
2.3.2 偏特化

偏特化就是针对模版参数进一步进行条件限制设计的特化版本。

偏特化有两种表现形式:

部分特化:将模板参数的一部分特化

template <class T1>
class Data<T1, int>
{
public:
	Data() {
		cout<<"Data<T1, int>" <<endl;
	}
private:
	T1 _d1;
	int _d2;
};

这个时候,当实例化对象时只要传入的第二个模板参数是int就会进行部分特化


参数更进一步的限制:偏特化并不仅仅是指特化部分参数,而是针对模板参数更进一步的条件限制所设计出来的一个特化版本

//两个参数偏特化为指针类型
template <typename T1, typename T2>
class Data <T1*, T2*>
{
public:
	Data() {
		cout<<"Data<T1*, T2*>" <<endl;
	}
private:
	T1 _d1;
	T2 _d2;
};
//两个参数偏特化为引用类型
template <typename T1, typename T2>
class Data <T1&, T2&>
{
public:
	Data(const T1& d1, const T2& d2)
		: _d1(d1)
		, _d2(d2)
	{
		cout<<"Data<T1&, T2&>" <<endl;
	}	
private:
	const T1 & _d1;
	const T2 & _d2;
};
void test2 ()
{
	Data<double , int> d1; // 调用特化的int版本
	Data<int , double> d2; // 调用基础的模板
	Data<int *, int*> d3; // 调用特化的指针版本
	Data<int&, int&> d4(1, 2); // 调用特化的指针版本
}

3. 模板分离编译

一个程序(项目)由若干个源文件共同实现,而每个源文件单独编译生成目标文件,最后将所有目标文件链接起来形成单一的可执行文件的过程称为分离编译模式

在这里不建议将模板的声明和定义分离,直接写在一个头文件就可以。


至此我们终于将C++中STL容器讲解完并且模拟实现了只要的接口,初步感受了C++面向对象编程的优点,后面我们会带来更加深入的C++的知识,请各位看官持续关注。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/449914.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Java设计模式】十五、命令模式

文章目录 1、命令模式2、案例3、总结 1、命令模式 餐厅点餐&#xff1a; 创建一个厨师对象&#xff0c;让服务员对象调用厨师对象中的方法进行点餐通知&#xff0c;当后面厨师换人&#xff0c;服务员类的代码也要修改&#xff0c;耦合 不符合开闭。理想状态&#xff1a;服务员…

java SSM农产品订购网站系统myeclipse开发mysql数据库springMVC模式java编程计算机网页设计

一、源码特点 java SSM农产品订购网站系统是一套完善的web设计系统&#xff08;系统采用SSM框架进行设计开发&#xff0c;springspringMVCmybatis&#xff09;&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采…

Asp .Net Web Forms 系列:配置图片防盗链的几种方法

通过 URL Rewrite Module 组件 URL Rewrite Module 是一个用于在 ASP.NET Web Forms 或其他基于 IIS 的 Web 应用程序中重写 URL 的强大工具。这个模块允许你将复杂的、不易于记忆或不利于搜索引擎优化的 URL 转换为更简洁、更友好的格式。通过 URL 重写&#xff0c;你可以提高…

Opencv 插值方法 总结

一、概括 面试的时候问到了一个图&#xff0c;就是如何将一个算子放缩&#xff1f;&#xff1f;我第一反应是resize&#xff08;&#xff09;,但是后来我转念一想&#xff0c;人家问的是插值方式&#xff0c;今天来总结一下 最邻近插值法原理分析及c实现_最临近插值法-CSDN博…

050-WEB攻防-PHP应用文件包含LFIRFI伪协议编码算法无文件利用黑白盒

050-WEB攻防-PHP应用&文件包含&LFI&RFI&伪协议编码算法&无文件利用&黑白盒 #知识点&#xff1a; 1、文件包含-原理&分类&危害-LFI&RFI 2、文件包含-利用-黑白盒&无文件&伪协议 演示案例&#xff1a; ➢文件包含-原理&分类&am…

解决达梦集成 JPA 时表和字段注释注解不生效的问题

前言 最近在做达梦数据库集成 JPA 时&#xff0c;发现使用的表注解和字段注解均未生效&#xff08;MySQL、Oracle、PostgreSQL中均可以在建表时正常生成相应的注释&#xff09;&#xff0c;经过调试发现解决办法也很简单&#xff1a; 自定义方言类继承自org.hibernate.dialect…

vue3 动态路由及使用动态路由后刷新界面出现空白页或者404

最近编写vue3动态路由的功能遇到了一些问题&#xff0c;处理好了&#xff0c;总结出来&#xff0c;希望能帮助到你。正片开始 先写好本地缓存菜单的方法&#xff08;存储、删除、获取&#xff09; // utils/menu.jsconst getMenuList () > {return JSON.parse(localStorag…

C语言——简易版扫雷

目录 前言 ​编辑 游戏规则 游戏结构的分析 游戏的设计 使用多文件的好处有以下几点&#xff1a; 游戏代码实现 框架&#xff08;test.c&#xff09; game函数&#xff08;test.c&#xff09; InitBoard初始化&#xff08;game.c&#xff09; Print打印棋盘&#xff08;g…

【物联网设备端开发】FastBee Arduino固件开发指南

目录 一、收集数据 二、打开FastBeeArduino 源码 三、修改 Config.cpp 文件 四、修改物模型数据 五、小程序配网 本文以 WeMOS D1 R1&#xff08;8266WIFI 模块&#xff09;固件开发为例&#xff0c;实现以下功能&#xff1a; 设备认证设备 Mqtt 交互Wifi 类设备配网 一…

vue学习笔记23-组件事件⭐

组件事件 在组件的模板表达式中&#xff0c;可以直接使用$emit方法触发自定义事件&#xff1b;触发自定义事件的目的是组件之间传递数据 好好好今天又碰到问题了&#xff0c;来吧来吧 测试发现其他项目都可以 正常的run ,就它不行 搜索发现新建项目并进入以后&#xff0c;用指…

搭建mysql主从复制(主主复制)

1&#xff1a;设主库允许远程连接(注意&#xff1a;设置账号密码必须使用的插件是mysql_native_password&#xff0c;其他的会连接失败) #切换到mysql这个数据库&#xff0c;修改user表中的host&#xff0c;使其可以实现远程连接 mysql>use mysql; mysql>update user se…

使用C#创建服务端Web API

前言 C# Web API 是一种基于 .NET 平台&#xff08;包括但不限于.NET Framework 和 .NET Core&#xff09;构建 HTTP 服务的框架&#xff0c;用于创建 RESTful Web 服务。REST&#xff08;Representational State Transfer&#xff09;是一种软件架构风格&#xff0c;它利用HT…

linux中查看目录文件(ls)用法:

查看目录下的文件&#xff1a;ls&#xff08;list&#xff09; 作用 查看目录下的内容 格式 ls -参数 操作对象参数 参数功能-l以长格形式显示文件和目录的详细信息,ls命令默认只显示名称的短格式。-d显示指定目录本身的信息,而不显示目录下的各个文件和子目录的信息。-…

【机器学习】机器学习是什么?用在哪里?怎么用?

1.机器学习是什么&#xff1f; 机器学习&#xff08;Machine Learning&#xff09;是人工智能的一个分支&#xff0c;它是一种通过对数据进行训练和学习&#xff0c;让计算机系统从中获取知识并改善性能的方法。简而言之&#xff0c;机器学习使计算机具有从数据中学习并自动改…

信息系统项目管理师009:消费互联网(1信息化发展—1.3现代化创新发展—1.3.3 消费互联网)

文章目录 1.3.3 消费互联网1.基本属性2.应用新格局 1.3.3 消费互联网 消费互联网是以个人为用户&#xff0c;以日常生活为应用场景的应用形式&#xff0c;满足消费者在互联网中的消费需求而生的互联网类型。消费互联网以消费者为服务中心&#xff0c;针对个人用户提升消费过程的…

机器学习模型—支持向量机 (SVM)

机器学习模型—支持向量机 (SVM) 支持向量机 (SVM) 是一种强大的机器学习算法,用于线性或非线性分类、回归,甚至异常值检测任务。SVM 可用于各种任务,例如文本分类、图像分类、垃圾邮件检测、笔迹识别、基因表达分析、人脸检测和异常检测。SVM 在各种应用中具有适应性和高效…

Github上哪些好用的工具

专注于web漏洞挖掘、内网渗透、免杀和代码审计&#xff0c;感谢各位师傅的关注&#xff01;网安之路漫长&#xff0c;与君共勉&#xff01; Qexo-爱写博客的师傅强烈推荐 漂亮的 Hexo 静态博客编辑器。该项目是基于 Django 的 Hexo 静态博客管理后台&#xff0c;支持文章管理、…

【Linux杂货铺】操作系统

目录 &#x1f308;前言&#x1f308; &#x1f4c1; 冯诺依曼体系结构 &#x1f4c2; 拓展问题&#xff1a;程序为什么要被加载到内存&#xff1f; &#x1f4c2; 主机与主机的交互 &#x1f4c1; 操作系统的概念 &#x1f4c2; 作用 &#x1f4c2; 理解“管理” &#x…

Hadoop学习3:问题解决

文章目录 问题解决1. ERROR: but there is no HDFS_NAMENODE_USER defined2. JAVA_HOME is not set and could not be found.3. Hadoop-DFS页面访问不了4. namenode格式化失败&#xff0c;或者dfs页面打开失败5. ERROR: but there is no YARN_RESOURCEMANAGER_USER defined. Ab…

YOLOv5独家改进:backbone改进 | 最新大卷积核CNN架构UniRepLKNet,ImageNet 88% | CVPR2024

💡💡💡本文独家改进:大核卷积一统多种模态!RepLK正统续作UniRepLKNet,代替YOLOv5 Backbone 改进结构图如下: 收录 YOLOv5原创自研 https://blog.csdn.net/m0_63774211/category_12511931.html 💡💡💡全网独家首发创新(原创),适合paper !!! 💡…