【神经网络与深度学习】LSTM(Long Short-Term Memory)神经网络模型

概述

LSTM(Long Short-Term Memory)是一种特殊的循环神经网络(RNN)结构,通常被用于处理和学习时间序列数据。因此,LSTM属于深度学习领域中的一种神经网络模型。

在深度学习中,LSTM被广泛应用于需要处理长期依赖关系的任务,如语音识别、自然语言处理、时间序列预测等。

相较于传统的RNN结构,LSTM通过引入门控单元的机制,能够更好地捕捉和利用时间序列数据中的长期依赖关系,从而提高模型的性能和泛化能力

RNN

循环神经网络(Recurrent Neural Network,RNN)是一种具有循环连接的神经网络结构,专门设计用于处理序列数据和具有时间依赖性的数据。在循环神经网络中,神经元之间的连接形成了循环路径,使得网络可以对序列数据进行逐步处理,并保留之前的信息状态。

在这里插入图片描述

循环神经网络的主要特点包括:

  1. 循环连接:神经元之间的连接形成了循环路径,使得网络可以捕捉到序列数据中的时间依赖关系,从而能够处理不定长的序列数据。

  2. 共享权重:在RNN中,相同层的神经元之间共享相同的权重参数,这使得网络可以通过时间共享参数来学习序列数据中的模式和特征。

  3. 状态传递:RNN中每个时间步的输出不仅取决于当前输入,还取决于之前的状态信息,因此网络可以保持记忆并利用历史信息来影响当前的计算。

尽管RNN在处理序列数据方面具有很强的表达能力,但也存在一些问题,例如难以捕捉长距离依赖关系、梯度消失和爆炸等问题。为了解决这些问题,出现了一些改进的RNN结构,如长短时记忆网络(LSTM)和门控循环单元(GRU),它们通过引入门控机制来更好地处理长期依赖关系。

这是典型的RNN网络在 t 时刻展开的样子:
在这里插入图片描述

LSTM

原始的RNN的内部结构如下:
在这里插入图片描述
在一个单元里只包含一个激活函数。

LSTM内部结构如下:
在这里插入图片描述
在这里插入图片描述

详细视频讲解

LSTM设置了两个关键变量:

  • 主要负责记忆短期信息、尤其是当前时间步信息的隐藏状态h,以及
  • 主要负责长期记它的细胞状态C

LSTM(Long Short-Term Memory)是一种特殊类型的循环神经网络结构,具有三个关键的门控单元,分别是输入门(input gate)、遗忘门(forget gate)和输出门(output gate)。这些门控单元通过学习来控制信息的流动,帮助LSTM网络更好地处理长期依赖关系。
在这里插入图片描述

下面是这三个门的工作原理:

  1. 遗忘门(Forget Gate):
  • 遗忘门确定了细胞状态中哪些信息应该被遗忘或丢弃。它也包含一个sigmoid激活函数,根据输入数据和前一个时间步的隐藏状态来输出一个介于0和1之间的值。
  • 通过乘法操作,遗忘门控制着细胞状态中历史信息的保留程度,决定哪些信息会在细胞状态中持续存在。

在这里插入图片描述

  1. 输入门(Input Gate):
  • 输入门控制着新输入信息对当前单元状态的影响程度。它包括一个sigmoid激活函数,用于生成一个介于0和1之间的值,表示每个单元状态中的哪些值应该被更新。

  • 通过使用乘法操作,输入门决定将新的输入信息加入到细胞状态中的哪些部分,并将结果传递给细胞状态。
    在这里插入图片描述

  • 更新状态:
    在这里插入图片描述

  1. 输出门(Output Gate):
  • 输出门控制着当前时刻的隐藏状态以及下一个时刻的细胞状态如何影响最终的输出。它包含一个sigmoid激活函数来确定输出状态的哪些部分将被激活。
  • 输出门还包含一个tanh激活函数,用于生成一个介于-1和1之间的值,表示当前时间步的细胞状态的候选值。
  • 通过乘法操作,输出门将细胞状态中经过筛选和更新后的信息发送到下一时间步的隐藏状态,并基于这个隐藏状态生成最终的输出。

在这里插入图片描述

这三个门控单元共同协作,使得LSTM网络能够更有效地处理长期依赖关系,控制信息流动和记忆存储,从而提高模型性能和泛化能力。

三个门是如何工作的

LSTM进行时间序列预测的步骤

LSTM在时间序列预测任务中通常是逐步进行预测的。具体流程如下:

  1. 初始化模型:
  • 首先,将历史时间步的输入数据提供给LSTM模型,获取初始的隐藏状态和细胞状态。
  1. 逐步预测:
  • 预测过程中,每次输入模型的是当前时间步的输入数据和上一时间步的隐藏状态,通过模型计算得到当前时间步的输出结果。
  • 模型输出的结果可以是一个预测值,也可以是多个预测值(根据任务需求和模型设计)。
  • 将当前时间步的输出结果作为下一时间步的输入,并重复这个过程,直到达到预测的时间范围或满足停止条件。
  1. 迭代预测:
  • 在每次预测后,可以将预测结果与真实值进行比较,评估预测误差,并将预测结果加入到输入序列中。
  • 可以选择将真实值作为下一时间步的输入,或者使用模型预测的结果作为下一时间步的输入,依赖于具体的预测策略和应用需求。

通过逐步预测的方式,LSTM可以对未来时间步的数值进行预测,并根据预测结果不断迭代调整模型输入,实现更长期的时间序列预测。需要注意的是,预测的准确性可能会随着时间步的增加而下降,因为误差会逐步累积。因此,在实际应用中,需要根据具体情况来选择预测的时间范围和迭代次数,以平衡预测精度和计算效率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/447042.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

站库分离技术--反向代理技术-雷池云WAF-给自己搭建一个安全点的网站

文章目录 概要整体架构流程技术名词解释技术细节ssh-ubuntu服务器docker-映射-链接-通信nginx反代mysql设置数据库新密码 小结我的mysql映射目录我的wordpress映射目录 成果展示 概要 新买了一个云服务器,想搭建一个站库分离的wordpress为主的网站,采用d…

数据结构:图及相关算法讲解

图 1.图的基本概念2. 图的存储结构2.1邻接矩阵2.2邻接表2.3两种实现的比较 3.图的遍历3.1 图的广度优先遍历3.2 图的深度优先遍历 4.最小生成树4.1 Kruskal算法4.2 Prim算法4.3 两个算法比较 5.最短路径5.1两个抽象存储5.2单源最短路径--Dijkstra算法5.3单源最短路径--Bellman-…

CentOS 7安装MySQL及常见问题与解决方案(含JDBC示例与错误处理)

引言 MySQL是一个流行的开源关系型数据库管理系统,广泛应用于各种业务场景。在CentOS 7上安装MySQL后,我们通常需要使用JDBC(Java Database Connectivity)连接MySQL进行后端操作。 目录 引言 CentOS 7安装MySQL 使用JDBC连接My…

AI入门笔记(四)

深度学习是人工智能的一种实现方法。本文我将学习到的关于深度学习的代表卷积神经网络的数学结构分享给大家。 深度学习是重叠了很多层的隐藏层(中间层)的神经网络。我们以一个例题为例。 建立一个卷积神经网络,用来识别通过 66 像素的图像读…

基于VSCode安装Node.js开发环境

根据官网介绍,Node.js 是一个免费的、开源的、跨平台的JavaScript实时运行环境,允许开发人员在浏览器之外编写命令行工具和服务器端脚本. Node.js框架由于是采用JavaScript语法进行调用的,因此Node.js环境除了用来编写调试Node.js代码&#…

mybatis基础操作(三)

动态sql 通过动态sql实现多条件查询,这里以查询为例,实现动态sql的书写。 创建members表 创建表并插入数据: create table members (member_id int (11),member_nick varchar (60),member_gender char (15),member_age int (11),member_c…

视图【MySQL】

文章目录 概念操作视图创建视图查询视图更新视图删除视图 视图规则和限制 概念 MySQL 中的视图(View)是一个虚拟表,其内容由查询定义。视图本身不包含数据,这些数据是从一个或多个实际表中派生出来的,通过执行视图定义…

简单了解TCP/IP四层模型

什么是计算机网络? 计算机网络我们可以理解为一个巨大的城市地图,我们想从A地前往B地,其中要走的路、要避开的问题都交给计算机网络解决,直到我们可以正常的到达目的地,那么我们会把其中的过程抽象成一个网络模型&…

练习01-登录注册(简单)

一、用户登录/注册实现 综合前面学的知识来实现简单的注册登录功能 1.准备工作 注册登录页面 数据库,数据表 mybatis 坐标引入,MySQL驱动 配置 映射文件 用户实体类 Servlet代码 2.页面 不想手写的可以看博主IT黄大大【带源码】 【炫酷登录界…

吴恩达机器学习-可选实验室:可选实验:使用逻辑回归进行分类(Classification using Logistic Regression)

在本实验中,您将对比回归和分类。 import numpy as np %matplotlib widget import matplotlib.pyplot as plt from lab_utils_common import dlc, plot_data from plt_one_addpt_onclick import plt_one_addpt_onclick plt.style.use(./deeplearning.mplstyle)jupy…

机器学习——PPO补充

On-policy vs Off-policy 今天跟环境互动,并学习是on-policy 只是在旁边看,就是Off-policy 从p中选q个重要的,需要加一个weight p(x)/q(x) p和q不能相差太多 采样数太少导致分布差很多,导致weight发生变化 On-Policy -&g…

STM32F103 CubeMX ADC 驱动 PS2游戏摇杆控制杆传感器模块

STM32F103 CubeMX ADC 驱动 PS2游戏摇杆控制杆传感器模块 1. 工程配置1.1 配置debug口1.2 配置时钟1.3 配置ADC1.4 配置串口1.5 配置时钟1.6 生成工程 2. 代码编写2.1 串口代码2.2 ADC读取数据的代码 1. 工程配置 1.1 配置debug口 1.2 配置时钟 1.3 配置ADC 1.4 配置串口 1.5 …

小迪安全37WEB 攻防-通用漏洞XSS 跨站权限维持钓鱼捆绑浏览器漏洞

#XSS跨站系列内容:1. XSS跨站-原理&分类&手法 XSS跨站-探针&利用&审计XSS跨站另类攻击手法利用 XSS跨站-防御修复&绕过策略 #知识点: 1、XSS 跨站-另类攻击手法分类 2、XSS 跨站-权限维持&钓鱼&浏览器等 1、原理 指攻击者利用…

JavaWeb-Maven基础

Maven是专门用于管理和构建Java项目的工具,是 Apache 下的一个纯 Java 开发的开源项目,基于项目对象模型(POM)概念。先来学习一下Maven基础,等后面学完开发框架后再学Maven高级,这次的内容如下 一、概述 …

leetcode 热题 100_搜索二维矩阵

题解一: 二叉搜索树:从矩阵右上角观察,结构类似二叉搜索树,因此可以用类似的解法来做。具体做法是双指针从右上角开始,向左下角逐步搜索,如果当前值比目标值大,则向下移动,如果当前值…

体系班第十三节

1判断完全二叉树递归做法 有四种情况&#xff1a;1 左树完全&#xff0c;右数满&#xff0c;且左高为右高加一 2左满 &#xff0c;右满&#xff0c;左高为右高加一 3左满&#xff0c;右完全&#xff0c;左右高相等 4左右均满且高相等 #include<iostream> #include&l…

封装方法3

上一篇处理了单元格返回值改写 这一篇处理剩余普通方法返回值改写 已经给了Object的返回值&#xff0c;需要回调 //返回结果是22个单元格的值&#xff0c;怎么给调用方 Object value getCellValue(cell);没有给调用方的情况 value值内容是什么 处理ecxel-22个单元值的返回结…

重启 explorer 进程的正确做法(二)

重启资源管理器进程的方法不唯一&#xff0c;但长期以来大家对实施方法用的不到位。 在上一篇中我认为&#xff1a;“我们往往使用 TerminateProcess 并传入 PID 和特殊结束代码 1 或者 taskkill /f /im 等方法重启资源管理器( explorer.exe )&#xff0c;其实这是不正确的。我…

神经网络实战前言

应用广泛 从人脸识别到网约车&#xff0c;在生活中无处不在 未来可期 无人驾驶技术便利出行医疗健康改善民生 产业革命 第四次工业革命——人工智能 机器学习概念 机器学习不等价与人工智能20世纪50年代&#xff0c;人工智能是说机器模仿人类行为的能力 符号人工智能 …

DevOps本地搭建笔记(个人开发适用)

需求和背景 win11 wsl2 armbian(玩客云矿渣&#xff09;&#xff0c;构建个人cicd流水线&#xff0c;提高迭代效率。 具体步骤 基础设施准备 硬件准备&#xff1a;一台笔记本&#xff0c;用于开发和构建部署&#xff0c;一台服务器&#xff0c;用于日常服务运行。 笔记本…