大模型产业落地,安全运营能否迎来“自动驾驶”时刻?

科技云报道原创。

通过一段文字描述,就能生成60秒堪比大片的视频,来自大模型Sora的出色表现,让全球都为之震撼。

无论是ChatGPT还是Sora,都只是大模型走出实验室的第一步,大模型如何在产业中落地,为具体的行业和场景带来价值飞跃,才是业内最关心的问题。

随着百模大战如火如荼,大模型向千行百业垂直领域下沉,安全成为大模型在B端市场落地最具可行性的行业之一。

全球多家云和安全厂商如:微软、谷歌、PA、Crowdstrike、奇安信、腾讯安全都推出了自己的安全大模型。

IDC在《大模型在网络安全领域的应用市场洞察,2023:破土萌芽,未来充满无限想象》报告中指出,大模型技术在安全运营、威胁情报、威胁检测与分析、应用程序安全、数据分类分级等应用场景初露峥嵘。

随着大模型技术的快速发展,将有更多的网络安全工具因为大模型的加入带来能力、效率和可用性等方面的跨越式发展。

那么,安全大模型能否像Sora一样,为安全行业带来颠覆性的影响?大模型如何在安全运营中发挥作用?又将如何全面走向行业落地?
在这里插入图片描述
安全大模型带来 “效率”革命

近年来AI技术的快速发展,使得网络安全防护在分析、检测、策略制定等方面有了很大的提升。尽管AI在攻防对抗中已崭露头角,但效果的提升依然缓慢。

“这些年安全行业要解决的问题没有本质上的变化,无非是黑客打进来,我们要防住。但在防守的环节中,对安全技术的理解、以及对安全工具使用的熟练程度,都会影响防守者的效率。所以,我们一直在思考,这个过程中,攻防的效率有没有可能出现极大的提升?”腾讯安全副总经理董文辉在采访中谈道。

直到AI大模型的出现,让整个技术圈都为之震撼——庞大的规模和深度,使得大模型能够处理和理解复杂的文本、图像、声音,其性能表现超越了传统的机器学习模型,同时还展现出强大的学习和泛化能力,仿佛展现了人类般的智慧。

“大模型让安全行业看到了更多提效的可能性”,董文辉表示。

以腾讯安全为例,2023年底,腾讯安全在混元大模型基础上,投喂安全知识语料库二次训练出安全行业大模型,并且基于安全行业大模型打造了一款腾讯云AI安全助手,覆盖告警解释、漏洞修复、日志处理、智能客服等四大能力。
在这里插入图片描述
比如漏洞修复,过去一旦发生漏洞安全事件,安全运营人员不仅要具备丰富的漏洞知识,还需要快速查阅各类漏洞通告和资料,去了解最新漏洞的类型、影响面以及处置方案,整个过程至少需要2-3天、20多次操作。

但是现在有了安全大模型的加持,漏洞修复可以交给腾讯云AI Copilot来进行辅助,3次对话、5次操作就能走完从发现到处置的闭环。
在这里插入图片描述
再比如告警处置,过去发生攻击时,安全运营人员面对几十万乃至上百万的告警,很难判断到底发生了什么,以及如何做。

现在通过腾讯云AI Copilot,安全人员只需要用自然语言对话,就可以清楚地了解告警发生了什么,并让AI Copilot自动化处置告警。

同时,AI Copilot还能拓展检测和处置的范围,用人的语言告诉安全人员,是否在其他地方有类似的问题、还可以做什么来阻断风险等。

在事件溯源分析时,AI Copilot可以自动化生成报告,也可以让安全人员通过对话的形式,来完成日志检索、资产剖析、安全性评估、SOAR剧本生成等操作。

例如,“我要查询近一个月攻击过我某资产的所有攻击者IP”,而不用像以前一样通过手动操作来查询。

这种安全服务的自动化,让安全厂商的客户成功、售后和工单处理效率大幅提升,“(腾讯云安全)从每人服务5个客户提升到了10余人”,腾讯安全副总经理龙海表示。

不难发现,在安全防护的“事前、事中、事后”全生命周期里,大模型都在为安全提速——不仅提升了安全产品的体验和交互效率,也提升了安全厂商服务的效率。

不仅如此,大模型还在安全能力的提升上有着令人惊叹的表现。

比如,攻击者通常会通过样本的快速变种绕过安全产品的防护,AI Copilot则可以快速生成规则,提升样本的检出率、准确率,同时相关率也在大幅提升。

尽管这种“水下”的安全能力,不能被用户直接感知,但大模型技术的加入,的确将安全的水位一次次拉高,为安全能力的提升带来了无限的可能性。

安全大模型更需务实

正如风靡技术圈的一句话:“所有行业都值得用大模型重做一遍”,安全行业亦是如此。不过随着安全厂商蜂拥而上争做大模型,其整体表现并没有想象中的那么惊艳,部分安全产品仅仅停留在类似ChatGPT问答对话框的形式改进上,没有带来跨越式的效果提升。

如何让大模型在安全运营中发挥出革命性的作用,其实与安全行业大模型的能力息息相关。

目前,通用大模型对于各个行业的理解还有局限性,因此各大厂商着力在训练针对行业的垂直大模型。

安全行业大模型就像是安全领域的专家,掌握着更全面的安全知识,具备安全行业的通识和常识,以及在安全领域特有问题上的逻辑推理能力,能够更精准地解决安全领域内的问题。

为了进一步提升安全行业大模型的效果,在其之上训练安全场景模型也必不可少,从而能够更好地完成一个或多个场景中的任务。

据腾讯安全副总经理龙海表示,腾讯云的安全行业大模型,就是在腾讯自研的“混元”通用模型基础上,投喂安全知识语料库(全部安全数据和日志),训练成具备安全知识的语言模型,通过3B安全知识库(未来会扩充至100B)训练了7B和13B安全基础模型。

同时,腾讯云还训练了多个安全场景模型,以适配云安全中的多种场景,如:漏洞检测和分析,告警研判和处置;威胁情报研判和生产等。

事实上,训练大模型是一个长期投入并不断调优的过程,这种高投入对厂商的实力要求很高,同时也要求厂商务实地打磨产品,而不是短期追逐热点。

一方面,是技术实力。

训练安全行业大模型,既需要通用大模型作为“底座”打基础,也需要行业数据作为“养料”进行投喂。

目前业内已有不少开源大模型,能够在短时间内拉低大模型的入场门槛,但是缺乏大模型的自研能力,厂商就会受制于开源模型本身的效果,在大模型为人所诟病的“幻觉”、“可解释性”等方面无法进一步突破。

同时,从GPT的实验可以看到,随着模型参数量的增加,模型性能均得到不同程度的提高,而来自人类反馈的强化学习(RLHF)生成的模型效果更好。这表明高质量的数据,是提升大模型效果的关键要素。

以腾讯为例,其通用大模型“混元”拥有超千亿参数规模,预训练语料超2万亿Tokens。

纯自研的“混元”,采用了在预训练阶段优化目标函数的“探真”技术方法,与目前市场上常见的开源大模型相比,该方法能有效降低幻觉30%至50%。

这种能力也同样体现在腾讯安全行业大模型上,让用户能够更加信任其给出的安全解决方案。

在效果提升上,腾讯云安全AI Copilot之所以能够展现出安全效率和能力的质的提升,和腾讯云安全行业大模型可以充分利用自身独有的数据积累密不可分。

过去多年来,腾讯安全科恩实验室、大数据实验室、玄武实验室等,在安全和AI领域有大量的创新研究成果,拥有业内领先的人工智能技术,积累了独有的安全行业数据。在安全和AI领域有大量的创新研究成果,拥有业内领先的人工智能技术,积累了独有的安全行业数据。

海量非公开的安全领域知识、专业经验,包括安全日志、文档、知识库、情报类数据,以及丰富的实战攻防和重保经验等,对于调优安全大模型、落地安全场景应用,起到了关键作用。

除此之外,云作为大模型背后的底座,为大模型长期训练提供坚实基础。

去年4月以来,腾讯云发布一系列面向大模型训练的基础设施,从自研的星星海服务器,到新一代HCC高性能计算集群,无疑都为其训练大模型扩充了军备。

另一方面,是商业化能力。

安全大模型想要长期发展,就必须深入到行业场景中去验证自己的价值,并通过商业化来保持正向的发展。

尽管目前多家厂商已推出安全大模型,但暂时还没有出现比较好的商业化安全产品,其中很重要的原因在于缺乏闭环场景的落地验证。

在多云、混合云架构逐渐普及的当下,企业内部往往涉及多个部门和多个安全工具,安全运营团队需要同时对接多个云的安全体系,很难实现安全协同,这在一定程度上阻碍了大模型的效果。

腾讯云安全产品负责人周荃认为,在未来,安全应该是一体的、统一的、标准的,这种一体化体现在针对公有云、混合云、自研云的多云统一管理,以及横跨生产网、办公网、互联网的三位一体防护,即是“全域安全”。

有了“全域一体化”的安全产品,安全大模型才能够在场景闭环中更好地发挥出“质”的提升效果,也能进一步验证其商业化路径,最终走向主流市场。

总的来说,基础大模型+安全数据积累+闭环场景验证,构成了安全大模型的核心竞争力。

从长期来看,大模型的竞争肯定会很激烈,也很容易出现赢家通吃的现象,但保有核心竞争力的安全大模型,最终用户会用脚投票。

“自动驾驶”的安全智能体

业界常说,一项新技术出现后,市场往往高估了它的短期效益,而低估了长期的影响。这句话也同样适用于大模型。目前安全大模型的应用,只是安全产业发展中的一个阶段,但肯定不会是最终形态。

在龙海看来,安全大模型的终局是以大模型的能力重构安全产品的交互方式和安全核心能力,进入安全的“自动驾驶”阶段,实现安全运营的全自动化阶段。

龙海将安全大模型的演进路径比喻为自动驾驶的三个阶段:

“油转电”阶段:大模型天然适合做自然语言交互的输入和输出,这部分工作比较明确,对模型的精确度要求不高,这是现阶段安全大模型普遍能达到的能力。

“辅助驾驶”阶段:同步研究安全基础模型和安全场景模型,选择一些能力场景辅助原有的安全体系提升安全能力。目前,腾讯云安全力争在80%的安全产品上都达到这一能力。

“**自动驾驶”阶段:**改造传统的交互方式和基于规则、特征和人工运营的能力模式,进入安全的全自动驾驶阶段。这是安全运营的理想形态,也是安全大模型无限逼近的未来。

在这个过程中,安全厂商正在探索从“辅助驾驶”到“自动驾驶”的多种可能性,AI Agent就是一个被业内广泛认可的方向。

腾讯安全科恩实验室高级安全研究员唐祺壹表示,如果说目前的AI Copilot更多是扮演“安全助手”角色,让人能够以自然语言与计算机进行交互,那么未来的AI Copilot则是一个“安全AI Agent(智能体)”,能够接受复杂形态的数据输入,独立决策并自主完成复杂任务,一定程度上取代人的工作。

比如在情报研判工作中,过去需要收集多方情报来源,结合各方面信息综合考虑,并不断积累经验,由安全专家参与研判。

但是安全大模型本身有海量的安全知识储备,以及“举一反三”的能力,使得情报研判“智能体”能够理解情报研判人员日常工作所接收到的所有信息,使用情报研判人员日常工作所使用的所有工具,具备情报研判人员所具条的知识和常识,最终正确决策,完成情报研判任务。

而在情报研判过程中,会有多个AI Agent,以自然语言对话的形式,互相之间不断对话。之后,综合研判Agent会汇总各子任务的研判结论和论据,自主决策形成最终研判结论,并形成报告。

整个过程就如同安全专家开展讨论一样,只是再也不用人类坐在桌前了。

结语

大模型的出现,犹如一股强大的变革之力,正在重塑人们对安全运营的认知和体验。尽管大模型在安全领域的应用还有很长的路要走,但是它所展示的安全“自动驾驶”的未来,让人无限向往。到那时,安全将如水电一样触手可得。

【关于科技云报道】

专注于原创的企业级内容行家——科技云报道。成立于2015年,是前沿企业级IT领域Top10媒体。获工信部权威认可,可信云、全球云计算大会官方指定传播媒体之一。深入原创报道云计算、大数据、人工智能、区块链等领域。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/445155.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数字化运营在教育行业的技术架构实践总结

随着科技的不断进步和数字化时代的到来,教育行业也正面临着数字化转型的挑战和机遇。教育行业的数字化运营需要依靠合理的技术架构来支撑,本文将探讨教育行业数字化运营的技术架构设计。 ## 第一步:需求分析和架构设计 在构建教育行业数字化…

初识Python(helloworld、海洋距离单位换算、打印名片、文本进度条、判断水仙花数)

一、Python3的安装,IDLE的使用:使用print函数输出”hello world”; 二、 PyCharm的安装与使用:创建”hello_world.py”文件并使用print函数输出”hello world” 三、海洋单位距离换算 要求:运行代码,控制台…

七、门控循环单元语言模型(GRU)

门控循环单元(Gated Recurrent Unit,GRU)是 LSTM 的一个稍微简化的变体,通常能够提供同等的效果,并且计算训练的速度更快。 门控循环单元原理图:参考门控循环单元 原理图中各个图形含义: X(t)&a…

PyTorch搭建LeNet训练集详细实现

一、下载训练集 导包 import torch import torchvision import torch.nn as nn from model import LeNet import torch.optim as optim import torchvision.transforms as transforms import matplotlib.pyplot as plt import numpy as npToTensor()函数: 把图像…

【亲测有效】解决三月八号ChatGPT 发消息无响应!

背景 今天忽然发现 ChatGPT 无法发送消息,能查看历史对话,但是无法发送消息。 可能的原因 出现这个问题的各位,应该都是点击登录后顶部弹窗邀请 [加入多语言 alapha 测试] 了,并且语言选择了中文,抓包看到 ab.chatg…

Flutter 开发环境搭建-VS Code篇

1.准备环境 Java SDK 下载及安装Flutter SDK 安装及配置环境变量 下载地址将flutter sdk解压目录下的bin目录放到系统环境变量中 检查环境,在系统终端中输入: # 打印flutter sdk版本号 flutter --version# 检查flutter运行环境 flutter doctor第一次运…

qt 格式化打印 日志 QMessagePattern 格式词法语法及设置

一、qt源码格式化日志 关键内部类 QMessagePattern qt为 格式化打印日志 提供了一个简易的 pattern(模式/格式) 词法解析的简易的内部类QMessagePattern,作用是获取和解析自定义的日志格式信息。 该类在qt的专门精心日志操作的源码文件Src\qtbase\src\corelib\global\qloggi…

专题1 - 双指针 - leetcode 11. 盛最多水的容器

leetcode 11. 盛最多水的容器 1. leetcode 11. 盛最多水的容器1. 题目详情1. 原题链接2. 基础框架 2. 解题思路1. 题目分析2. 算法原理3. 时间复杂度 3. 代码实现4. 知识与收获 1. leetcode 11. 盛最多水的容器 1. 题目详情 给定一个长度为 n 的整数数组 height 。有 n 条垂线…

软考攻略/软考详解/软考等级/软考科目

目录 前言 一、软考是什么 二、证书样式 三、软考介绍 3.1 什么是软考? 3.2 通过了软考,就算有职称了么? 3.3 哪些人可以参加软考? 3.4 软考设置了哪些资格? 3.5 哪些资格含金量比较高呢?报考建议? 四、中级资格推荐以下几个: 计算机软件类 --软件…

【AI视野·今日NLP 自然语言处理论文速览 第八十二期】Tue, 5 Mar 2024

AI视野今日CS.NLP 自然语言处理论文速览 Tue, 5 Mar 2024 (showing first 100 of 175 entries) Totally 100 papers 👉上期速览✈更多精彩请移步主页 Daily Computation and Language Papers Key-Point-Driven Data Synthesis with its Enhancement on Mathematica…

农场管理小程序|基于微信小程序的农场管理系统设计与实现(源码+数据库+文档)

农场管理小程序目录 目录 基于微信小程序的农场管理系统设计与实现 一、前言 二、系统设计 三、系统功能设计 1、用户信息管理 2、农场信息管理 3、公告信息管理 4、论坛信息管理 四、数据库设计 五、核心代码 七、最新计算机毕设选题推荐 八、源码获取&#x…

Day22:安全开发-PHP应用留言板功能超全局变量数据库操作第三方插件引用

目录 开发环境 数据导入-mysql架构&库表列 数据库操作-mysqli函数&增删改查 数据接收输出-html混编&超全局变量 第三方插件引用-js传参&函数对象调用 完整源码 思维导图 PHP知识点: 功能:新闻列表,会员中心&#xff0…

Stable Diffusion 模型下载:ZavyChromaXL(现实、魔幻)

本文收录于《AI绘画从入门到精通》专栏,专栏总目录:点这里。 文章目录 模型介绍生成案例案例一案例二案例三案例四案例五案例六案例七案例八 下载地址 模型介绍 作者述:该模型系列应该是用于 SDXL 的 ZavyMix SD1.5 模型的延续。主要重点是获…

【工具】Git的24种常用命令

相关链接 传送门&#xff1a;>>>【工具】Git的介绍与安装<< 1.Git配置邮箱和用户 第一次使用Git软件&#xff0c;需要告诉Git软件你的名称和邮箱&#xff0c;否则无法将文件纳入到版本库中进行版本管理。 原因&#xff1a;多人协作时&#xff0c;不同的用户可…

M1电脑 Xcode15升级遇到的问题

遇到四个问题 一、模拟器下载经常报错。 二、Xcode15报错: SDK does not contain libarclite 三、报错coreAudioTypes not found 四、xcode模拟器运行一次下次必定死机 一、模拟器下载经常报错。 可以https://developer.apple.com/download/all/?qios 下载最新的模拟器&…

Skywalking

1、简介 Skywalking是由国内开源爱好者吴晟开源并提交到Apache孵化器的开源项目&#xff0c; 2017年12月SkyWalking成为Apache国内首个个人孵化项目&#xff0c; 2019年4月17日SkyWalking从Apache基金会的孵化器毕业成为顶级项目&#xff0c; 目前SkyWalking支持Java、 .Net、 …

lvs集群中NAT模式

群集的含义 由多台主机构成&#xff0c;但对外表现为一个整体&#xff0c;只提供一个访问入口&#xff0c;相当于一台大型的计算机。 横向发展:放更多的服务器&#xff0c;有调度分配的问题。 垂直发展&#xff1a;升级单机的硬件设备&#xff0c;提高单个服务器自身功能。 …

复盘-PPT

调整PPT编号起始页码在设计→幻灯片大小 设置所有以及文本项目符号 ## 打开母版&#xff0c;找到对应级别设置重置 当自动生成的smartart图形不符合预期时

Python Web应用程序构建的最佳实践:代码实例与深度解析【第122篇—装饰器详解】

Python Web应用程序构建的最佳实践&#xff1a;代码实例与深度解析 在当今数字时代&#xff0c;构建高效、可扩展的Web应用程序是开发者们的一项重要任务。Python&#xff0c;作为一种简洁、强大的编程语言&#xff0c;为Web开发提供了丰富的工具和框架。在本篇文章中&#xff…

递增三元组 刷题笔记

题意为 若存在 a中的数小于b中的数&#xff0c;b中的数小于c中的数 则该数算一种方案 思路 暴力模拟优化 两层循环遍历即可 从b到c的过程我们发现 第三层并不需要循环 直接加上 大于b的数量即可 那么第一层和第三层是对称的 我们有没有可能再去掉一层循环 只做一次遍历 …