STM32---通用定时器(一)理论基础

写在前面:在STM32F103中有众多的定时器,其中包括两个基本定时器,基本定时器的内容已经在上节进行了介绍,基本定时器的功能、结构、使用都较为简单。而STM32F1中还含有4个通用定时器(TIM2\3\4\5),这些定时器相互独立,不共享资源。本节我们来学习通用定时器的基本使用。

一、通用定时器

基本定时器回顾:CSDN

1.1 定时器简介

        上图为通用定时器与基本、高级定时器的基本区别;其中主要的特性是:

1、含有16位递增、递减、中心对齐的计数器;

2、含有16位预分频器,分频系数为1-65536;

3、可用于触发DAC、ADC事件;

4、在更新事件、触发事件、输入捕获、输出比较中可以产生中断以及DMA请求;

5、含有4个独立通道,用于输入捕获、输出比较 、输出PWM波形以及单脉冲模式。

1.2 定时器结构框图

        如上图所示,为STM32F1中通用定时器的结构框架,其结构相对于基本定时器来说就很复杂,可能第一眼就很厌烦。但是我们将核心抓住,然后分模块化的进行学习,将一一进行消化。手带你我们看第三部分:也就是图中蓝色区域,我们细心看可以发现,其结构就是基本定时器的结构,这样就只剩下五部分学习了:先对五部分进行简单介绍,后面在细细进行学习;

1、时钟源

与基本定时器(只能来自内部时钟)不同的是:

 通用定时器时钟可以选择下面四类时钟源之一:
1)内部时钟(CK_INT)
2)外部时钟模式 1:外部输入引脚(TIx),x=1,2(即只能来自于通道 1 或者通道 2)
3)外部时钟模式 2:外部触发输入(ETR)
4)内部触发输入(ITRx):使用一个定时器作为另一定时器的预分频器

2、控制器

        控制器包括:从模式控制器、编码器接口和触发控制器(TRGO)。从模式控制器可以控制计数器复位、启动、递增/递减、计数。编码器接口针对编码器计数。触发控制器用来提供触发信号给别的外设,比如为其它定时器提供时钟或者为 DAC/ADC 的触发转换提供信号。

3、时基单元

        与基本定时相同,主要的作用就是进行计数,在来自第一部分的时钟信号下,计数器以(递增、递减、中心对齐) 的方式进行计数,然后同自动重装载寄存器进行比较,产生事件或中断。

4、输入捕获

        一般应用是要和第5部分一起完成测量功能。TIMx_CH1~ TIMx_CH4 表示定时器的 4 个通道,这 4 个通道都是可以独立工作的。IO 端通过复用功能与这些通道相连。配置好 IO 端口的复用功能后,将需要测量的信号输入到相应的IO 端口,输入捕获部分可以对输入的信号的上升沿,下降沿或者双边沿进行捕获,常见的测量有:测量输入信号的脉冲宽度、测量 PWM 输入信号的频率和占空比等。

5、输入捕获与输出比较共同部分

6、输出比较

        输出比较,一般应用是要和第⑤部分一起完成定时器输出功能。TIMx_CH1~ TIMx_CH4 表示定时器的 4 个通道,这 4 个通道都是可以独立工作的。IO 端口通过复用功能与这些通道相连。

二、时钟源介绍

2.1 内部时钟

        同基本定时器相同,TIM2-TIM6都是过载在APB1总线上,我们知道APB1总线的时钟频率是32MHz,但是这些定时器的时钟并不是由APB1直接提供的,而是经过了一个倍频器,APB1 总线时钟频率为 36MHz,APB1 预分频器的预分频系数为 2,所以这些定时器时钟源频率为 72MHz。一般情况下,我们都是用的内部时钟,所以内部时钟也是最重要的部分

2.2外部时钟模式1

        外部时钟模式 1 这类时钟源,顾名思义时钟信号来自芯片外部。时钟源进入定时器的流程
如下:外部时钟源信号→IO→TIMx_CH1(或者 TIMx_CH2),这里需要注意的是:外部时钟模
式 1 下,时钟源信号只能从 CH1 或者 CH2 输入到定时器,CH3 和 CH4 都是不可以的。从 IO
到 TIMx_CH1(或者 TIMx_CH2),就需要我们配置 IO 的复用功能,才能使 IO 和定时器通道相
连通。

        输入捕获滤波器: 由 ICF[3:0]位来设置滤波方式,也可以设置不使用滤波器,用于完善输入的信号。

        边沿检测器:由 CC2P 位来设置检测的边沿,可以上升沿或者下降沿检测; TI1F_ED未经过CC2P即为双边沿检测。

        触发选择:TS[4:0]位来选择 TRGI(触发输入信号)的来源, TI1F_ED、TI1FP1 和 TI2FP2 三个触发输入信号(TRGI)。前两个来自通道1,第三个来自通道2.

        从模式选择:由 ECE 位和 SMS[2:0]位来选择定时器的时钟源。这里我们选择的是外部时钟模式1。

2.2 外部时钟模式2

    外部时钟模式 2,顾名思义时钟信号来自芯片外部。时钟源进入定时器的流程如下:外部
时钟源信号→IO→TIMx_ETR。从 IO 到 TIMx_ETR,就需要我们配置 IO 的复用功能,才能使
IO 和定时器相连通。 

        外部触发极性:  ETP 位来设置上升沿有效还是下降沿有效,选择下降沿有效的话,信号会经过反相器。

        外部触发预分频器:ETPS[1:0]位来设置预分频系数,系数范围:1、2、4、8。例如:分频系数为2,则由io口来两个边沿信号,才能触发一次,一般情况下都是选择为1.

        滤波器:ETF[3:0]位来设置滤波方式,也可以设置不使用滤波器。作用同上面的一样。

        从模式选择器:由 ECE 位和 SMS[2:0]位来选择定时器的时钟源。这里我们介绍的是外部时钟模式 2,直接将ECE设置为1即可。

2.3内部触发输入

        内部触发输入是使用一个定时器作为另一个定时器的预分频器,即实现定时器的级联。下
面以 TIM1 作为 TIM2 的预分频器。

三、时基单元 

         与基本定时器结构一样,时基单元包括:计数器寄存器(TIMx_CNT)、预分频器寄存器(TIMx_PSC)、自动重载寄存器(TIMx_ARR)

        不同点是:通用定时器的计数模式有三种:递增计数模式、递减计数模式和中心对齐模式;
TIM2 和 TIM5 的计数器是 32 位的。

递增计数:每来一个 脉冲,计数器的值就会递增加 1。当计数器值与自动重装载寄存器的设定值相等时,计数器的值就会被自动清零并且会生成更新事件,然后下一个 脉冲到来,计数器的值的值就会递增加 1,如此循环。

递增计数:来了一个计数脉冲,计数器就减 1,直到计数器寄存器的值减到 0,减到 0 时定时器溢出,由于是递减计数,故而称为定时器下溢,定时器溢出就会伴随着更新事件的发生。

中心对齐模式:计数器先从 0 开始递增计数,直到计数器的值等于自动重载寄存器影子寄存器的值减 1 时,定时器上溢,同时生成更新事件,然后从自动重载寄存器影子寄存器的值开始递减计算,直到计数值等于 1 时,定时器下溢,同时生成更新事件,然后又从 0 开始递增计数,依此循环。

四、输入捕获

        输入捕获是要同第5部分一起完成输入捕获实验,其中输入捕获含有CH1-CH4四个定时器入口,这四个入口是可以独立工作的,IO端通过复用工作模式与入口相连,将需要检测的信号输入对应的IO端口,输入捕获部分可以对信号的上升沿、下降沿以及双边沿进行捕获。

        捕获的原理在于:信号的输入———上升、下降、双边沿检测极性——计数器的值锁存到相应的捕获/比较寄存器,最后通过捕获比较寄存器的差值计算信号高低电平的时间。

滤波器: 由 ICF[3:0]位来设置滤波方式,也可以设置不使用滤波器;

边沿检测器:由 CC1P 位来设置检测的边沿,可以上升沿或者下降沿检测。

输入捕获映射选择器:由 CC1S[1:0]位来选择把 IC1 映射到 TI1、TI2 还是 TRC。

 输入捕获 1 预分频器:由 ICPS[1:0]位来设置预分频系数,范围:1、2、4、8。

        上图为第5部分输入捕获和输出比较公用部分,我们目前只看输入捕获相关的即白色部分:由下到上,分别是计数器——捕获/比较影子寄存器——捕获/比较预装载寄存器。其中当第4部分的捕获输入满足条件后,计数器的值进入影子寄存器,再满足某些条件,影子寄存器的值进入捕获/比较预装载寄存器,最后我们读取存储在预装载寄存器中的值进行处理。

五、输出比较

        输出比较一般是同第5部分相结合使用的,也是通过CH41-CH4进行输出工作的,那我们就有个矛盾,第4部分的输入捕获与第6部分的输出比较用的是相同的通道,连接的是相同的IO口,那么能一起工作吗?显然是不行的。就是说要么执行输入捕获的功能,要么执行输出比较的功能,而且共用第5部分,也就是说第5部分一时间只能被共用一个。

        输出:顾名思义是由通道向外部输出电平信号;

        比较:顾名思义是经过比较后产生信号。

        上图为输出比较同第5部分相结合的放大图,这次我们由上往下看,首先是捕获/比较预装载寄存器,我们直接设定里面的值,然后在某种情况下,将预装载寄存器的值转至影子寄存器,影子寄存器的值同计数器进行比较,他们的比较结果将输出至第六部分进行处理。 

        通过比较后,进入输出模式控制器: oc1ref 是输出参考信号,高电平有效,为高电平时称之为有效电平,为低电平时称之为无效电平。它的高低电平受到三个方面的影响:OC1M[3:0]位配置的输出比较模式、第⑤部分比较器的比较结果、还有就是 OC1CE 位配置的 ETRF 信号。ETRF 信号可以将 Oc1ref 电平强制清零,该信号来自 IO 外部。

        CC1P 位用于选择通道输出极性。
        CC1E 位置 1 使能通道输出。
        OC1 信号就会从 TIMx_CH1 输出到 IO 端口,再到 IO 外部。

        以上便是本节的内容,理论性较强,也是学会使用通用定时器的基本,大家可以多看几遍,熟悉其中的原理,在用的时候知道工作的流程即可。下节我们将针对相关的理论进行实验验证。

        创作不易,还希望大家多多点赞支持!!!

    

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/444941.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Unity零基础到进阶 | Unity中 屏蔽指定UI点击事件 的多种方法整理

Unity零基础到进阶 | Unity中 屏蔽指定UI点击事件 的多种方法整理一、Unity中 屏蔽透明区域的点击事件1.1 使用Image组件自带的参数检测1.2 根据点击的坐标计算该点的像素值是否满足阈值 二、Unity中屏蔽 不规则图片按钮点击的事件 总结 🎬 博客主页:htt…

剑指offer经典题目整理(二)

一、斐波那契数列(fib) 1.链接 斐波那契数列_牛客题霸_牛客网 (nowcoder.com) 2.描述 斐波那契数列就是数列中任意一项数字,都会等于前两项之和,满足f(n) f(n-1) f(n-2) 的一个数列,例如:1 1 2 3 5 8…

JVM知识整体学习

前言:本篇没有任何建设性的想法,只是我很早之前在学JVM时记录的笔记,只是想从个人网站迁移过来。文章其实就是对《深入理解JVM虚拟机》的提炼,纯基础知识,网上一搜一大堆。 一、知识点脑图 本文只谈论HotSpots虚拟机。…

2024年腾讯云8核16G服务器性能测试和并发数测试

腾讯云8核16G轻量服务器CPU性能如何?18M带宽支持多少人在线?轻量应用服务器具有100%CPU性能,18M带宽下载速度2304KB/秒,折合2.25M/s,系统盘为270GB SSD盘,月流量3500GB,折合每天116.6GB流量&…

开源的Java图片处理库介绍

在 Java 生态系统中,有几个流行的开源库可以用于图片处理。这些库提供了丰富的功能,如图像缩放、裁剪、颜色调整、格式转换等。以下是几个常用的 Java 图片处理库的介绍,包括它们的核心类、主要作用和应用场景,以及一些简单的例子…

spring-cloud-openfeign 3.0.0之前版本(对应spring boot 2.4.x之前版本)feign配置加载顺序

在之前写的文章配置基础上 https://blog.csdn.net/zlpzlpzyd/article/details/136060312 下图为自己整理的

Linux:kubernetes(k8s)prestop事件的使用(10)

他的作用是在结束pod容器之后进行的操作 apiVersion: v1 # api文档版本 kind: Pod # 资源对象类型 metadata: # pod相关的元数据,用于描述pod的数据name: nginx-po # pod名称labels: # pod的标签type: app #这个是随便写的 自定义的标签version: 1.0.0 #这个…

借助 Terraform 功能协调部署 CI/CD 流水线-Part 1

在当今快节奏的开发环境中,实现无缝、稳健的 CI/CD 流水线对于交付高质量软件至关重要。在本文中,我们将向您介绍使用 Bitbucket Pipeline、ArgoCD GitOps 和 AWS EKS 设置部署的步骤,所有步骤都将利用 Terraform 的强大功能进行编排。在Part…

Linux 之二:CentOS7 的 IP 常用命令和配置及 xshell 基本使用方法

1. 进入虚拟机 点击右键---进入终端--输入 ip adrr 或 ifconfig 查看ip地址 下面输入命令 ifconfig(注意:不是 ipconfig ) 或 ip addr 来查看当前系统 IP 查看到IP 后,比如:上面是 192.168.184.137 1.1 IP 常用命令…

[VulnHub靶机渗透] Nullbyte

🍬 博主介绍👨‍🎓 博主介绍:大家好,我是 hacker-routing ,很高兴认识大家~ ✨主攻领域:【渗透领域】【应急响应】 【Java、PHP】 【VulnHub靶场复现】【面试分析】 🎉点赞➕评论➕收…

【MATLAB】MATLAB学习笔记

MATLAB入门 基础操作变量命名数据类型逻辑和流程控制循环结构分支结构 绘图基本操作二维平面绘图绘图参数三位立体绘图图像窗口的分割 本文参考B站视频:BV13D4y1Q7RS 由于我对于C语言很熟悉,很多语法是会参考C来学 基础操作 清屏%% 清空环境变量及命令 …

前端vite+vue3——可视化页面性能耗时指标(fmp、fp)

文章目录 ⭐前言💖vue3系列文章 ⭐可视化fmp、fp指标💖 MutationObserver 计算 dom的变化💖 使用条形图展示 fmp、fp时间 ⭐项目代码⭐结束 ⭐前言 大家好,我是yma16,本文分享关于 前端vitevue3——可视化页面性能耗时…

论文阅读:Diffusion Model-Based Image Editing: A Survey

Diffusion Model-Based Image Editing: A Survey 论文链接 GitHub仓库 摘要 这篇文章是一篇基于扩散模型(Diffusion Model)的图片编辑(image editing)方法综述。作者从多个方面对当前的方法进行分类和分析,包括学习…

图像处理与图像分析—图像的读入(C语言)

学习将会依据教材图像处理与图像分析基础(C/C)版内容展开 什么是数字图像处理 一副图像可以定义为一个二维函数 f(x,y) ,其中 x 和 y 是空间(平面)坐标,任意一对空间坐标 (x,y) 处的幅度值 &am…

了解 HTTPS 中间人攻击:保护你的网络安全

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…

二叉树进阶--二叉搜索树的进一步优化--AVL树 Self-balancing binary search tree

前言: 在上一次的文章中,我们详细介绍了二叉树的进阶树型,即BS树(二叉搜索树),但在文章的结尾,二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表…

golang实现正向代理和反向代理

文章目录 正向代理反向代理区别与联系:总结代理服务器实现正向代理反向代理正向代理 正向代理是客户端代理,它位于客户端和目标服务器之间。它的作用是保护客户端的隐私和安全。 如我们现在想要访问谷歌,但是由于某些原因,无法直接访问到谷歌,我们可以通过连接一台代理服务…

Redis缓存过期策略

文章目录 一、面试题二、redis内存1. Redis的内存大小怎么查看?2. 设置redis内存3. redis内存的OOM 三、redis内存淘汰策略1. redis的过期键删除策略2. redis缓存淘汰策略 一、面试题 1. 生产上你们redis内存设置多少? 2. 如何配置、修改redis内存大小…

YOLOV5 初体验:简单猫和老鼠数据集模型训练

1、前言 前两天,通过OpenCV 对猫和老鼠视频的抽取,提取了48张图片。这里不再介绍,可以参考之前的文章:利用OpenCV 抽取视频的图片,并制作目标检测数据集-CSDN博客 数据的目录如下: 项目的下载见文末 2、制…

基于Java的在线课程教学系统(Vue.js+SpringBoot)

目录 一、摘要1.1 系统介绍1.2 项目录屏 二、研究内容2.1 课程类型管理模块2.2 课程管理模块2.3 课时管理模块2.4 课程交互模块2.5 系统基础模块 三、系统设计3.1 用例设计3.2 数据库设计 四、系统展示4.1 管理后台4.2 用户网页 五、样例代码5.1 新增课程类型5.2 网站登录5.3 课…