软件杯 交通目标检测-行人车辆检测流量计数 - 软件杯

文章目录

  • 0 前言
  • 1\. 目标检测概况
    • 1.1 什么是目标检测?
    • 1.2 发展阶段
  • 2\. 行人检测
    • 2.1 行人检测简介
    • 2.2 行人检测技术难点
    • 2.3 行人检测实现效果
    • 2.4 关键代码-训练过程
  • 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 毕业设计 交通目标检测-行人车辆检测流量计数

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1. 目标检测概况

1.1 什么是目标检测?

目标检测,粗略来说就是:输入图片/视频,经过处理,得到:目标的位置信息(比如左上角和右下角的坐标)、目标的预测类别、目标的预测置信度(confidence)。

1.2 发展阶段

  1. 手工特征提取算法,如VJ、HOG、DPM

  2. R-CNN算法(2014),最早的基于深度学习的目标检测器之一,其结构是两级网络:

  • 1)首先需要诸如选择性搜索之类的算法来提出可能包含对象的候选边界框;
  • 2)然后将这些区域传递到CNN算法进行分类;
  1. R-CNN算法存在的问题是其仿真很慢,并且不是完整的端到端的目标检测器。

  2. Fast R-CNN算法(2014末),对原始R-CNN进行了相当大的改进:提高准确度,并减少执行正向传递所花费的时间。
    是,该模型仍然依赖于外部区域搜索算法。

  3. faster R-CNN算法(2015),真正的端到端深度学习目标检测器。删除了选择性搜索的要求,而是依赖于

  • (1)完全卷积的区域提议网络(RPN, Region Purpose Network),可以预测对象边界框和“对象”分数(量化它是一个区域的可能性的分数)。
  • (2)然后将RPN的输出传递到R-CNN组件以进行最终分类和标记。
  1. R-CNN系列算法,都采取了two-stage策略。特点是:虽然检测结果一般都非常准确,但仿真速度非常慢,即使是在GPU上也仅获得5 FPS。

  2. one-stage方法有:yolo(2015)、SSD(2015末),以及在这两个算法基础上改进的各论文提出的算法。这些算法的基本思路是:均匀地在图片的不同位置进行密集抽样,抽样时可以采用不同尺度和长宽比,然后利用CNN提取特征后直接进行分类与回归。
    整个过程只需要一步,所以其优势是速度快,但是训练比较困难。

  3. yolov3(2018)是yolo作者提出的第三个版本(之前还提过yolov2和它们的tinny版本,tinny版本经过压缩更快但是也降低了准确率)。

2. 行人检测

这里学长以行人检测作为例子来讲解目标检测。

2.1 行人检测简介

行人检测( Pedestrian
Detection)一直是计算机视觉研究中的热点和难点。行人检测要解决的问题是:找出图像或视频帧中所有的行人,包括位置和大小,一般用矩形框表示,和人脸检测类似,这也是典型的目标检测问题。

行人检测技术有很强的使用价值,它可以与行人跟踪,行人重识别等技术结合,应用于汽车无人驾驶系统(ADAS),智能机器人,智能视频监控,人体行为分析,客流统计系统,智能交通等领域。

2.2 行人检测技术难点

由于人体具有相当的柔性,因此会有各种姿态和形状,其外观受穿着,姿态,视角等影响非常大,另外还面临着遮挡
、光照等因素的影响,这使得行人检测成为计算机视觉领域中一个极具挑战性的课题。行人检测要解决的主要难题是:

  • 外观差异大:包括视角,姿态,服饰和附着物,光照,成像距离等。从不同的角度看过去,行人的外观是很不一样的。处于不同姿态的行人,外观差异也很大。由于人穿的衣服不同,以及打伞、戴帽子、戴围巾、提行李等附着物的影响,外观差异也非常大。光照的差异也导致了一些困难。远距离的人体和近距离的人体,在外观上差别也非常大。

  • 遮挡问题: 在很多应用场景中,行人非常密集,存在严重的遮挡,我们只能看到人体的一部分,这对检测算法带来了严重的挑战。

  • 背景复杂:无论是室内还是室外,行人检测一般面临的背景都非常复杂,有些物体的外观和形状、颜色、纹理很像人体,导致算法无法准确的区分。

  • 检测速度:行人检测一般采用了复杂的模型,运算量相当大,要达到实时非常困难,一般需要大量的优化。

2.3 行人检测实现效果

在这里插入图片描述

检测到行人后还可以做流量分析:

在这里插入图片描述

2.4 关键代码-训练过程


    import cv2
    import numpy as np
    import random


    def load_images(dirname, amout = 9999):
        img_list = []
        file = open(dirname)
        img_name = file.readline()
        while img_name != '':  # 文件尾
            img_name = dirname.rsplit(r'/', 1)[0] + r'/' + img_name.split('/', 1)[1].strip('\n')
            img_list.append(cv2.imread(img_name))
            img_name = file.readline()
            amout -= 1
            if amout <= 0: # 控制读取图片的数量
                break
        return img_list



    # 从每一张没有人的原始图片中随机裁出10张64*128的图片作为负样本
    def sample_neg(full_neg_lst, neg_list, size):
        random.seed(1)
        width, height = size[1], size[0]
        for i in range(len(full_neg_lst)):
            for j in range(10):
                y = int(random.random() * (len(full_neg_lst[i]) - height))
                x = int(random.random() * (len(full_neg_lst[i][0]) - width))
                neg_list.append(full_neg_lst[i][y:y + height, x:x + width])
        return neg_list


    # wsize: 处理图片大小,通常64*128; 输入图片尺寸>= wsize
    def computeHOGs(img_lst, gradient_lst, wsize=(128, 64)):
        hog = cv2.HOGDescriptor()
        # hog.winSize = wsize
        for i in range(len(img_lst)):
            if img_lst[i].shape[1] >= wsize[1] and img_lst[i].shape[0] >= wsize[0]:
                roi = img_lst[i][(img_lst[i].shape[0] - wsize[0]) // 2: (img_lst[i].shape[0] - wsize[0]) // 2 + wsize[0], \
                      (img_lst[i].shape[1] - wsize[1]) // 2: (img_lst[i].shape[1] - wsize[1]) // 2 + wsize[1]]
                gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
                gradient_lst.append(hog.compute(gray))
        # return gradient_lst



    def get_svm_detector(svm):
        sv = svm.getSupportVectors()
        rho, _, _ = svm.getDecisionFunction(0)
        sv = np.transpose(sv)
        return np.append(sv, [[-rho]], 0)



    # 主程序
    # 第一步:计算HOG特征
    neg_list = []
    pos_list = []
    gradient_lst = []
    labels = []
    hard_neg_list = []
    svm = cv2.ml.SVM_create()
    pos_list = load_images(r'G:/python_project/INRIAPerson/96X160H96/Train/pos.lst')
    full_neg_lst = load_images(r'G:/python_project/INRIAPerson/train_64x128_H96/neg.lst')
    sample_neg(full_neg_lst, neg_list, [128, 64])
    print(len(neg_list))
    computeHOGs(pos_list, gradient_lst)
    [labels.append(+1) for _ in range(len(pos_list))]
    computeHOGs(neg_list, gradient_lst)
    [labels.append(-1) for _ in range(len(neg_list))]
     
    # 第二步:训练SVM
    svm.setCoef0(0)
    svm.setCoef0(0.0)
    svm.setDegree(3)
    criteria = (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS, 1000, 1e-3)
    svm.setTermCriteria(criteria)
    svm.setGamma(0)
    svm.setKernel(cv2.ml.SVM_LINEAR)
    svm.setNu(0.5)
    svm.setP(0.1)  # for EPSILON_SVR, epsilon in loss function?
    svm.setC(0.01)  # From paper, soft classifier
    svm.setType(cv2.ml.SVM_EPS_SVR)  # C_SVC # EPSILON_SVR # may be also NU_SVR # do regression task
    svm.train(np.array(gradient_lst), cv2.ml.ROW_SAMPLE, np.array(labels))
     
    # 第三步:加入识别错误的样本,进行第二轮训练
    # 参考 http://masikkk.com/article/SVM-HOG-HardExample/
    hog = cv2.HOGDescriptor()
    hard_neg_list.clear()
    hog.setSVMDetector(get_svm_detector(svm))
    for i in range(len(full_neg_lst)):
        rects, wei = hog.detectMultiScale(full_neg_lst[i], winStride=(4, 4),padding=(8, 8), scale=1.05)
        for (x,y,w,h) in rects:
            hardExample = full_neg_lst[i][y:y+h, x:x+w]
            hard_neg_list.append(cv2.resize(hardExample,(64,128)))
    computeHOGs(hard_neg_list, gradient_lst)
    [labels.append(-1) for _ in range(len(hard_neg_list))]
    svm.train(np.array(gradient_lst), cv2.ml.ROW_SAMPLE, np.array(labels))



    # 第四步:保存训练结果
    hog.setSVMDetector(get_svm_detector(svm))
    hog.save('myHogDector.bin')


最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/443341.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

mtk平台ATF介绍

1、链接地址 uboot ATF 2、工具链 ARM 64位平台需要aarch64工具链&#xff0c;可以在staging_dir/toolchain- aarch64_xxxxx中找到。另外dtc工具来为ATF编译.dts文件&#xff0c;一般在 Ubuntu中的device-tree-compiler包&#xff0c;编译后的u-boot/kernel源代码树中的脚本…

设计模式(工厂模式)

设计模式&#xff08;工厂模式&#xff09; 一、工厂模式介绍 在工厂模式中&#xff0c;父类决定生成示例的方式&#xff0c;但不决定所要生成的具体的类&#xff0c;具体的处理部分交给子类负责。这样就可以将生成示例的框架和生成示例的类解耦。 二、示例程序 以下示例程…

[壹],安卓开发环境搭建

1&#xff0c;下载JDK并安装 网址: Java Downloads | Oracle 下载完成&#xff0c;安装到自定义位置。 2&#xff0c;设置系统环境变量 2.1&#xff0c;新建环境变量JAVA_HOME 2.2&#xff0c;Path环境变量追加 %JAVA_HOME%\bin 2.3&#xff0c;验证安装效果 3&#xff0c;…

error Mixed spaces and tabs no-mixed-spaces-and-tabs报错

vue尚硅谷todolist案例 中报错如下&#xff1a; ERROR Failed to compile with 1 error 21:18:11 Module Error (from ./node_modules/eslint-loader/index.js): F:\文件\网页文件\code\source\vu…

UCRTBASED.DLL缺失怎么办?UCRTBASED.DLL文件的解决方法分享

UCRTBASED.DLL 是一个属于Microsoft Universal C Runtime (UCRT) 的动态链接库&#xff08;DLL&#xff09;文件。在Windows操作系统中&#xff0c;这个文件提供了一系列C和C标准库函数的实现&#xff0c;这些函数对于支持基于C或C开发的应用程序至关重要。 UCRT是微软为了统一…

揭秘:我的GPTs广告项目到底挣了多少银子?

写在前面 &#x1f31f; 之前分享了GPTs接入广告赚取收益的项目保姆级教程: GPTs接入广告到提现成功全过程真实记录 &#xff0c;很多粉丝朋友问&#xff0c;我GPTs广告项目&#xff0c;一共赚了多少钱&#xff0c;现在还能入场吗&#xff1f; 这篇文章&#xff0c;就来总结一下…

【web | CTF】BUUCTF [强网杯 2019]随便注

天命&#xff1a;这题考点有两个&#xff0c;第一个是闭合&#xff0c;第二个是叠堆注入 先探测一下是不是单引号闭合&#xff0c;其实我一开始以为是没有引号闭合的&#xff0c;毕竟是数字 经过测试&#xff0c;的确是单引号闭合 然后探测未知的东西&#xff0c;我习惯性直接…

雷卯的ESD管SDA3311DN可以替代AZ5883-01F ---国产化替代篇

已经有很多客户选用雷卯的 SDA3311DN替代Amazing的 AZ5883-01F&#xff0c;客户可以获得更好的价格和更快的交期。 SDA3311DN主要应用于对3.3V供电的静电浪涌防护等&#xff0c;特别是在一些受空间所限的小电子设备很受青睐。 雷卯的SDA3311DN优势&#xff1a; IPP大(65A) &…

【Python】Python Astar算法生成最短路径GPS轨迹

简介 最短路径问题是计算机科学中一个经典问题&#xff0c;它涉及找到图中两点之间距离最短的路徑。在实际应用中&#xff0c;最短路径算法用于解决广泛的问题&#xff0c;例如导航、物流和网络优化。 步骤 1&#xff1a;加载道路网络数据 要计算最短路径&#xff0c;我们需…

WebSocket:实现客户端与服务器实时通信的技术

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

【分库分表】基于mysql+shardingSphere的分库分表技术

目录 1.什么是分库分表 2.分片方法 3.测试数据 4.shardingSphere 4.1.介绍 4.2.sharding jdbc 4.3.sharding proxy 4.4.两者之间的对比 5.留个尾巴 1.什么是分库分表 分库分表是一种场景解决方案&#xff0c;它的出现是为了解决一些场景问题的&#xff0c;哪些场景喃…

ERC20学习

ERC20简介 ERC20是一种代币标准&#xff0c;用于创建可替代的代币。 ERC20是在以太坊网络上实现的代币标准&#xff0c;它为数字资产或代币定义了一套规则和接口。这些符合ERC20标准的代币在性质上是完全相同的。即每一个代币都可以被另一个同类型的代币替代&#xff0c;这种属…

数据结构——线性表顺序表示详解

目录 1.线性表的类型定义 2.基本操作 3.线性表的存储结构 4.补充 1.元素类型说明 2.数组定义​编辑 3.c语言的内存动态分配 4.c的动态存储分配 5.c中的参数传递 引用类型作参数 6.顺序表基本操作的实现 1.线性表的初始化 代码示例&#xff1a; 2.销毁线性表&…

11. 搭建较通用的GoWeb开发脚手架

文章目录 导言一、加载配置二、初始化日志三、初始化MySQL连接四、初始化Redis连接五、初始化gin框架内置的校验器使用的翻译器六、注册路由七、 启动服务八、测试运行九&#xff1a;注意事项 代码地址&#xff1a;https://gitee.com/lymgoforIT/bluebell 导言 有了前述知识的…

【LV15 DAY8 多路复用及信号驱动】

一、多路复用 描述符&#xff1a; 文件描述符&#xff1a;设备文件、管道文件 socket描述符1.1 应用层&#xff1a;三套接口select、poll、epoll select&#xff1a;位运算实现 监控的描述符数量有限&#xff08;32位机1024,64位机2048&#xff09; 效率差 poll&#xff1a…

MySQL基础-----约束

目录 前言 一、概述 二、约束演示 三、外键约束 1.介绍 2.语法 四、删除/更新行为 1.CASCADE 2.SET NULL 前言 本期我们开始MySQL约束的学习&#xff0c;约束一般是只数据键对本条数据的约束&#xff0c;通过约束我们可以保证数据库中数据的正确、有效性和完整性。 下面…

如何打sap NOTE

文章目录 1 Introduction2 Method2.1 search note2.2 download note2.3 upload note 3 Summarry 1 Introduction SAP Notes is a set of instructions to remove known errors from the SAP systems. Using the Note Assistant tool, SAP Notes can be applied to the system.…

分类算法入门:以鸢尾花数据集为例

近两年人工智能技术蓬勃发展&#xff0c;OpenAI连续放出ChatGPT、Sora等“王炸”产品&#xff0c;大模型、AIGC等技术带来了革命性的提升&#xff0c;很多人认为人工智能将引领第四次工业革命。国内各大互联网公司也是重点投资布局&#xff0c;从个人角度来说要尽快跟上时代的潮…

记录汇川:IO隔离编程

IO隔离&#xff1a;方便程序修改 无论是输入点坏了还是输出点坏了&#xff0c;或者人为接错线&#xff0c;或者对调点&#xff0c;我们只需要更改IO隔离得输入输出就可以了。方便。 停止按钮外接常闭&#xff0c;里面也使用常闭&#xff0c;为了断线检测功能(安全)&#xff…

基于java ssm springboot女士电商平台系统

基于java ssm springboot女士电商平台系统源码文档设计 博主介绍&#xff1a;多年java开发经验&#xff0c;专注Java开发、定制、远程、文档编写指导等,csdn特邀作者、专注于Java技术领域 作者主页 央顺技术团队 Java毕设项目精品实战案例《1000套》 欢迎点赞 收藏 ⭐留言 文末…