挑战杯 基于深度学习的视频多目标跟踪实现

文章目录

  • 1 前言
  • 2 先上成果
  • 3 多目标跟踪的两种方法
    • 3.1 方法1
    • 3.2 方法2
  • 4 Tracking By Detecting的跟踪过程
    • 4.1 存在的问题
    • 4.2 基于轨迹预测的跟踪方式
  • 5 训练代码
  • 6 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的视频多目标跟踪实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 先上成果

在这里插入图片描述

3 多目标跟踪的两种方法

3.1 方法1

基于初始化帧的跟踪,在视频第一帧中选择你的目标,之后交给跟踪算法去实现目标的跟踪。这种方式基本上只能跟踪你第一帧选中的目标,如果后续帧中出现了新的物体目标,算法是跟踪不到的。这种方式的优点是速度相对较快。缺点很明显,不能跟踪新出现的目标。

3.2 方法2

基于目标检测的跟踪,在视频每帧中先检测出来所有感兴趣的目标物体,然后将其与前一帧中检测出来的目标进行关联来实现跟踪的效果。这种方式的优点是可以在整个视频中跟踪随时出现的新目标,当然这种方式要求你前提得有一个好的“目标检测”算法。

学长主要分享Option2的实现原理,也就是Tracking By Detecting的跟踪方式。

4 Tracking By Detecting的跟踪过程

**Step1:**使用目标检测算法将每帧中感兴趣的目标检测出来,得到对应的(位置坐标, 分类, 可信度),假设检测到的目标数量为M;

**Step2:**通过某种方式将Step1中的检测结果与上一帧中的检测目标(假设上一帧检测目标数量为N)一一关联起来。换句话说,就是在M*N个Pair中找出最像似的Pair。

对于Step2中的“某种方式”,其实有多种方式可以实现目标的关联,比如常见的计算两帧中两个目标之间的欧几里得距离(平面两点之间的直线距离),距离最短就认为是同一个目标,然后通过匈牙利算法找出最匹配的Pair。当让,你还可以加上其他的判断条件,比如我用到的IOU,计算两个目标Box(位置大小方框)的交并比,该值越接近1就代表是同一个目标。还有其他的比如判断两个目标的外观是否相似,这就需要用到一种外观模型去做比较了,可能耗时更长。

在关联的过程中,会出现三种情况:

1)在上一帧中的N个目标中找到了本次检测到的目标,说明正常跟踪到了;

2)在上一帧中的N个目标中没有找到本次检测到的目标,说明这个目标是这一帧中新出现的,所以我们需要把它记录下来,用于下下一次的跟踪关联;

3)在上一帧中存在某个目标,这一帧中并没有与之关联的目标,那么说明该目标可能从视野中消失了,我们需要将其移除。(注意这里的可能,因为有可能由于检测误差,在这一帧中该目标并没有被检测到)

在这里插入图片描述

4.1 存在的问题

上面提到的跟踪方法在正常情况下都能够很好的工作,但是如果视频中目标运动得很快,前后两帧中同一个目标运动的距离很远,那么这种跟踪方式就会出现问题。

在这里插入图片描述
如上图,实线框表示目标在第一帧的位置,虚线框表示目标在第二帧的位置。当目标运行速度比较慢的时候,通过之前的跟踪方式可以很准确的关联(A, A’)和(B,
B’)。但是当目标运行速度很快(或者隔帧检测)时,在第二帧中,A就会运动到第一帧中B的位置,而B则运动到其他位置。这个时候使用上面的关联方法就会得到错误的结果。

那么怎样才能更加准确地进行跟踪呢?

4.2 基于轨迹预测的跟踪方式

既然通过第二帧的位置与第一帧的位置进行对比关联会出现误差,那么我们可以想办法在对比之前,先预测目标的下一帧会出现的位置,然后与该预测的位置来进行对比关联。这样的话,只要预测足够精确,那么几乎不会出现前面提到的由于速度太快而存在的误差

在这里插入图片描述

如上图,我们在对比关联之前,先预测出A和B在下一帧中的位置,然后再使用实际的检测位置与预测的位置进行对比关联,可以完美地解决上面提到的问题。理论上,不管目标速度多么快,都能关联上。那么问题来了,怎么预测目标在下一帧的位置?

方法有很多,可以使用卡尔曼滤波来根据目标前面几帧的轨迹来预测它下一帧的位置,还可以使用自己拟合出来的函数来预测下一帧的位置。实际过程中,我是使用拟合函数来预测目标在下一帧中的位置。

在这里插入图片描述
如上图,通过前面6帧的位置,我可以拟合出来一条(T->XY)的曲线(注意不是图中的直线),然后预测目标在T+1帧的位置。具体实现很简单,Python中的numpy库中有类似功能的方法。

5 训练代码

这里记录一下训练代码,来日更新

 if FLAGS.mode == 'eager_tf':
        # Eager mode is great for debugging
        # Non eager graph mode is recommended for real training
        avg_loss = tf.keras.metrics.Mean('loss', dtype=tf.float32)
        avg_val_loss = tf.keras.metrics.Mean('val_loss', dtype=tf.float32)

        for epoch in range(1, FLAGS.epochs + 1):
            for batch, (images, labels) in enumerate(train_dataset):
                with tf.GradientTape() as tape:
                    outputs = model(images, training=True)
                    regularization_loss = tf.reduce_sum(model.losses)
                    pred_loss = []
                    for output, label, loss_fn in zip(outputs, labels, loss):
                        pred_loss.append(loss_fn(label, output))
                    total_loss = tf.reduce_sum(pred_loss) + regularization_loss

                grads = tape.gradient(total_loss, model.trainable_variables)
                optimizer.apply_gradients(
                    zip(grads, model.trainable_variables))

                logging.info("{}_train_{}, {}, {}".format(
                    epoch, batch, total_loss.numpy(),
                    list(map(lambda x: np.sum(x.numpy()), pred_loss))))
                avg_loss.update_state(total_loss)

            for batch, (images, labels) in enumerate(val_dataset):
                outputs = model(images)
                regularization_loss = tf.reduce_sum(model.losses)
                pred_loss = []
                for output, label, loss_fn in zip(outputs, labels, loss):
                    pred_loss.append(loss_fn(label, output))
                total_loss = tf.reduce_sum(pred_loss) + regularization_loss

                logging.info("{}_val_{}, {}, {}".format(
                    epoch, batch, total_loss.numpy(),
                    list(map(lambda x: np.sum(x.numpy()), pred_loss))))
                avg_val_loss.update_state(total_loss)

            logging.info("{}, train: {}, val: {}".format(
                epoch,
                avg_loss.result().numpy(),
                avg_val_loss.result().numpy()))

            avg_loss.reset_states()
            avg_val_loss.reset_states()
            model.save_weights(
                'checkpoints/yolov3_train_{}.tf'.format(epoch))

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/441825.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

排序——希尔排序、插入排序

本节复习排序中的希尔排序,希尔排序属于插入排序。 希尔排序的代码和插入排序非常类似。 思想却相对于插入排序来说复杂。 在复习希尔排序之前, 我们需要先复习一下插入排序。 目录 插入排序 插入过程 代码实现 希尔排序 希尔排序的思想 代码实…

新零售SaaS架构:订单履约系统架构设计(万字图文总结)

什么是订单履约系统? 订单履约系统用来管理从接收客户订单到将商品送达客户手中的全过程。 它连接了上游交易(客户在销售平台下单环)和下游仓储配送(如库存管理、物流配送),确保信息流顺畅、操作协同&…

0201安装报错-hbase-大数据学习

1 基础环境简介 linux系统:centos,前置安装:jdk、hadoop、zookeeper,版本如下 软件版本描述centos7linux系统发行版jdk1.8java开发工具集hadoop2.10.0大数据生态基础组件zookeeper3.5.7分布式应用程序协调服务hbase2.4.11分布式…

算法刷题Day3 | 203.移除链表元素、707.设计链表、206.反转链表

目录 0 容易被大家忽略的问题1 移除链表元素1.1 开始的错误解题1.2 头结点和头指针的区别1.2.1 区别1.2.2 思考 1.3 正确的题解1.3.1 直接移除法1.3.2 添加虚拟头节点辅助移除法1.3.3 总结 2 设计链表2.1 我的解题 3 反转链表3.1 我的解题3.2 其他方法(双指针法、递…

【硬件工程师面经整理24_其它】

文章目录 1 功放线性指标调试方法2 功放线性指标之间的关系3 光衰减器的原理4 材料硬度由什么决定?5 晶振市场失效率?6 原码、反码和补码 1 功放线性指标调试方法 调试功放线性指标的方法可以根据具体的情况和要求而有所不同,以下是一般性的…

房屋租赁系统|基于 Mysql+Java+JSP技术的房屋租赁系统设计与实现(可运行源码+数据库+设计文档+部署说明+视频演示)

目录 文末获取源码 前台首页功能 管理员功能 租户功能 房屋租赁系统结构图 数据库设计 lunwen参考 概述 源码获取 文末获取源码 前台首页功能 管理员功能 租户功能 房屋租赁系统结构图 数据库设计 lunwen参考 概述 随着科学技术的飞速发展,社会的方方面面…

荔枝派zero驱动开发06:GPIO操作(platform框架)

参考: 正点原子Linux第五十四章 platform设备驱动实验 一张图掌握 Linux platform 平台设备驱动框架 上一篇:荔枝派zero驱动开发05:GPIO操作(使用GPIO子系统) 下一篇:更新中… 概述 platform是一种分层思…

Mac测试环境搭建

1 下载pycharm 下载地址:PyCharm:JetBrains 出品的用于数据科学和 Web 开发的 Python IDE 2 安装python3.6.8 下载地址:Index of /ftp/python/3.6.8/ 安装后提示错误 换一种方式:用conda 下载地址:Free Download | …

实现QT中qDebug()的日志重定向

背景: 在项目开发过程中,为了方便分析和排查问题,我们需要将原本输出到控制台的调试信息写入日志文件,进行持久化存储,还可以实现日志分级等。 日志输出格式: 我们需要的格式包括以下内容: 1.…

鸡肋的Git

1.前言 对于大多数开发人员来说,我们大多数在学习或者工作过程中只关注核心部分,比如说学习Java,可能对于大多数人而言一开始都是从Java基础学起,然后408,Spring,中间件等,当你发现很多高深的技…

红队专题-开源漏扫-巡风xunfeng源码剖析与应用

开源漏扫-巡风xunfeng 介绍主体两部分:网络资产识别引擎,漏洞检测引擎。代码赏析插件编写JSON标示符Python脚本此外系统内嵌了辅助验证功能文件结构功能 模块添加IP三. 进行扫描在这里插入图片描述 ![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/de587a6f6f694…

html前端的几种加密/解密方式

HTML前端的加密解密方式有以下几种: 一、base64加密 Base64编码:Base64是一种将二进制数据转换为可打印字符的编码方式。在前端,可以使用JavaScript的btoa()函数进行Base64编码,使用atob()函数进行解码。 var str "hello…

二维码门楼牌管理系统在教育领域的应用及其优势

文章目录 前言一、二维码门楼牌管理系统概述二、教育领域的应用场景三、二维码门楼牌管理系统的优势四、结语 前言 随着信息技术的快速发展,二维码门楼牌管理系统在教育领域的应用越来越广泛。该系统不仅提高了地址信息的准确性,还为学校、家长和教育工…

Feign实现微服务间远程调用续;基于Redis实现消息队列用于延迟任务的处理,Redis分布式锁的实现;(黑马头条Day05)

目录 延迟任务和定时任务 使用Redis设计延迟队列原理 点评项目中选用list和zset两种数据结构进行实现 如何缓解Redis内存的压力同时保证Redis中任务能够被正确消费不丢失 系统流程设计 使用Feign实现微服务间的任务消费以及文章自动审核 系统微服务功能介绍 提交文章-&g…

C#,数值计算,解微分方程的龙格-库塔四阶方法与源代码

Carl Runge Martin Wilhelm Kutta 1 龙格-库塔四阶方法 数值分析中,龙格-库塔法(Runge-Kutta)是用于模拟常微分方程的解的重要的一类隐式或显式迭代法。这些技术由数学家卡尔龙格和马丁威尔海姆库塔于1900年左右发明。 对于一阶…

[Electron]中IPC进程间通信

Electron中IPC 进程间通信 (IPC) 是在 Electron 中构建功能丰富的桌面应用程序的关键部分之一。在 Electron 中,进程使用 ipcMain 和 ipcRenderer 模块,通过开发人员定义的“通道”传递消息来进行通信。 本文介绍以下几个方面: 1-渲染进程到…

【vue.js】文档解读【day 3】 | 列表渲染

如果阅读有疑问的话,欢迎评论或私信!! 文章目录 列表渲染v-forv-for 与对象在 v-for 里使用范围值template 上的 v-forv-for与v-if通过key管理状态组件上使用v-for数组变化侦测 列表渲染 v-for 在我们想要渲染出一个数组中的元素时&#xf…

【C语言】数据类型和变量

前言💞💞 啦啦啦~这里是土土数据结构学习笔记🥳🥳 💥个人主页:大耳朵土土垚的博客 💥 所属专栏:C语言笔记 💥欢迎大家🥳🥳点赞✨收藏&#x1f49…

linux网络编程(概念)

概念 通信四元组 IP(主机) 0号地址与1号地址 端口(进程) 四元组组成 各种体系结构 网络的封包和解包 ip地址向物理(mac)地址转换 mac转换ip-------->RARP协议 TCP协议 UDP协议 socket函数接口

瑞_23种设计模式_模板方法模式

文章目录 1 模板方法模式(Template Pattern) ★ 钩子函数1.1 介绍1.2 概述1.3 模板方法模式的结构1.4 模板方法模式的优缺点1.5 模板方法模式的使用场景 2 案例一2.1 需求2.2 代码实现 3 案例二3.1 需求3.2 代码实现 4 JDK源码解析(InputStre…