Cilium系列-4-Cilium本地路由

系列文章

  • Cilium 系列文章

前言

在前文中我们提到, cilium install 默认安装后, Cilium 功能启用和禁用情况如下:

  1. datapath mode: tunnel: 因为兼容性原因,Cilium 会默认启用 tunnel(基于 vxlan) 的 datapatch 模式,也就是 overlay 网络结构。
  2. KubeProxyReplacement: Disabled Cilium 是没有完全替换掉 kube-proxy 的,后面我们会出文章介绍如何实现替换。
  3. IPv6 BIG TCP: Disabled 该功能要求 Linux Kernel >= 5.19, 所以在 Kernel 4.19.232 状态为禁用。
  4. BandwidthManager: Disabled 该功能要求 Linux Kernel >= 5.1, 所以目前是禁用的
  5. Host Routing: Legacy Legacy Host Routing 还是会用到 iptables, 性能较弱;但是 BPF-based host routing 需要 Linux Kernel >= 5.10
  6. Masquerading: IPtables IP 伪装有几种方式:基于 eBPF 的,和基于 iptables 的。默认使用基于 iptables, 推荐使用 基于 eBPF 的。
  7. Hubble Relay: disabled 默认 Hubble 也是禁用的。

今天我们尝试关闭 tunnel 功能, 启用本地路由(Native-Routing)功能以提升网络性能.

测试环境

  • Cilium 1.13.4
  • K3s v1.26.6+k3s1
  • OS
    • 3台 Ubuntu 23.04 VM, Kernel 6.2, x86

VXLan 封装

在未提供任何配置的情况下,Cilium 会自动以这种模式运行,因为这种模式对底层网络基础设施的要求最低

在这种模式下,所有集群节点都会使用基于 UDP 的封装协议 VXLAN 或 Geneve 形成网状隧道。Cilium 节点之间的所有流量都经过封装.

这种模式的缺点

MTU 开销

由于增加了封装头,有效载荷可用的 MTU 要低于本地路由(VXLAN 每个网络数据包 50 字节)。这导致特定网络连接的最大吞吐率降低。

本地路由(Native-Routing)

本地路由数据路径在 tunnel: disabled 时启用,并启用本机数据包转发模式。本机数据包转发模式利用 Cilium 运行网络的路由功能,而不是执行封装。

Native-Routing

在本地路由模式下,Cilium 会将所有未寻址到其他本地端点的数据包委托给 Linux 内核的路由子系统。这意味着,数据包的路由将如同本地进程发出数据包一样。因此,连接集群节点的网络必须能够路由 PodCIDR。

配置本地路由时,Cilium 会自动在 Linux 内核中启用 IP 转发。

网络需求

  • 要运行本地路由模式,连接运行 Cilium 的主机的网络必须能够转发使用给 pod 或其他工作负载的地址的 IP 流量。
  • 节点上的 Linux 内核必须知道如何转发所有运行 Cilium 的节点上 pod 或其他工作负载的数据包。这可以通过两种方式实现:
    • 节点本身不知道如何路由所有 pod IP,但网络上有路由器知道如何到达所有其他 pod。在这种情况下,Linux 节点被配置为包含指向此类路由器的默认路由。这种模式用于云提供商网络集成。有关详细信息,请参阅 Google Cloud、AWS ENI 和 Azure IPAM。
    • 每个节点都知道所有其他节点的所有 pod IP,并在 Linux 内核路由表中插入路由来表示这一点。
      • 如果所有节点共享一个 L2 网络,则可以启用选项 auto-direct-node-routes: true 来解决这个问题。本次实验我们使用这种方式启用本地路由.
      • 否则,必须运行额外的系统组件(如 BGP 守护进程)来分发路由。有关如何使用 kube-router 项目实现这一目标,请参阅指南《使用 Kube-Router 运行 BGP》。

实战: 启用本地路由

从现在开始, 后续的 cilium 安装配置越来越复杂, 有很多定制的配置参数, 所以我们从现在开始使用 Helm Chart 方式安装 Cilium.

📚️Reference:

Helm Chart 方法适用于需要对 Cilium 安装进行精细控制的高级安装和生产环境。它要求你为特定的 Kubernetes 环境手动选择最佳数据路径 (datapath) 和 IPAM 模式。

先使用 Helm Chart 进行最基本安装, 保证和前文的配置相同.

卸载 Cilium

首先卸载通过 cilium install 安装的 Cilium.

export KUBECONFIG=/etc/rancher/k3s/k3s.yaml
cilium uninstall

Helm Chart 基本安装

然后, 使用 Helm Chart 进行基本安装, 保证和前文配置相同.

helm repo add cilium https://helm.cilium.io/

helm install cilium cilium/cilium --version 1.13.4 \
   --namespace kube-system \
   --set operator.replicas=1 \
   --set k8sServiceHost=192.168.2.43 \
   --set k8sServicePort=6443 \
   --set hubble.relay.enabled=true \
   --set hubble.ui.enabled=true

说明如下:

  • --namespace kube-system 和默认的 cilium install 保持一致, cilium 安装在 kube-system
  • operator.replicas=1 指定 Operator 副本数为 1, 默认为 2
  • k8sServiceHost k8sServicePort 显式指定 K8s 集群的 APIServer 的 IP 和 端口
  • hubble.relay.enabled=true hubble.ui.enabled=true 启用 Hubble 可观察性.

重启未受管节点

如果你创建的集群中没有使用 node.cilium.io/agent-not-ready 污点的节点,则需要手动重启未托管的 pod。重启所有已运行但未以主机联网模式运行的 pod,以确保 Cilium 开始管理它们。这样做是为了确保所有在部署 Cilium 之前已经运行的 pod 都具有 Cilium 提供的网络连接,并且 NetworkPolicy 也适用于它们:

$ kubectl get pods --all-namespaces -o custom-columns=NAMESPACE:.metadata.namespace,NAME:.metadata.name,HOSTNETWORK:.spec.hostNetwork --no-headers=true | grep '<none>' | awk '{print "-n "$1" "$2}' | xargs -L 1 -r kubectl delete pod
pod "helm-install-traefik-crd-wv67f" deleted
pod "helm-install-traefik-vt2zh" deleted
pod "svclb-traefik-c19bcc42-6jqxs" deleted
pod "coredns-59b4f5bbd5-qmn2k" deleted
pod "local-path-provisioner-76d776f6f9-mpct2" deleted
pod "traefik-57c84cf78d-jpx47" deleted
pod "metrics-server-68cf49699b-dxvnk" deleted
pod "hubble-ui-68fb44f6f5-z9w7c" deleted
pod "hubble-relay-5f68b89b76-s6xp5" deleted

Helm Chart 启用本地路由

helm upgrade cilium cilium/cilium \
   --namespace kube-system \
   --reuse-values \
   --set tunnel=disabled \
   --set autoDirectNodeRoutes=true \
   --set ipv4NativeRoutingCIDR=10.0.0.0/22

配置说明如下:

  • --reuse-values 复用上一次的 Helm Chart 安装配置
  • tunnel=disabled 启用本地路由模式
  • autoDirectNodeRoutes=true 每个节点都知道所有其他节点的所有 pod IP,并在 Linux 内核路由表中插入路由来表示这一点。如果所有节点共享一个 L2 网络,则可以启用选项 auto-direct-node-routes: true 来解决这个问题。
  • ipv4-native-routing-cidr: x.x.x.x/y 设置可执行本地路由的 CIDR。

至此, 本地路由就已经启用了. 可以再次运行相关命令来检查.

验证本地路由是否启用

首先, 未启用之前, 也就是通过 VXLan 封装时, 会有一个对应的 VXLan 网卡 cilium_vxlan. 示例如下:

5: cilium_vxlan: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN group default qlen 1000
    link/ether 52:5b:dd:37:f5:45 brd ff:ff:ff:ff:ff:ff
    inet6 fe80::505b:ddff:fe37:f545/64 scope link
       valid_lft forever preferred_lft forever

可以查看 Cilium Agent 的日志:

$ k3s kubectl logs -f cilium-nxbsn -n kube-system|grep datapath
Defaulted container "cilium-agent" out of: cilium-agent, config (init), mount-cgroup (init), apply-sysctl-overwrites (init), mount-bpf-fs (init), clean-cilium-state (init), install-cni-binaries (init)
level=info msg="  --datapath-mode='veth'" subsys=daemon
level=info msg="clang (10.0.0) and kernel (6.2.0) versions: OK!" subsys=linux-datapath
level=info msg="linking environment: OK!" subsys=linux-datapath
level=info msg="Restored 1 node IDs from the BPF map" subsys=linux-datapath
level=info msg="Detected devices" devices="[]" subsys=linux-datapath
level=info msg="Setting up BPF datapath" bpfClockSource=jiffies bpfInsnSet=v3 subsys=datapath-loader

通过 --datapath-mode='veth' 可以判断已经成功启用本地路由.

也可以查看网卡的 mtu, cilium 的 vslan 网卡没有了, 如下:

$ ip a
...
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000
    link/ether 00:15:5d:02:20:22 brd ff:ff:ff:ff:ff:ff
    inet 172.17.236.121/20 brd 172.17.239.255 scope global dynamic noprefixroute eth0
       valid_lft 84958sec preferred_lft 84958sec
    inet6 fe80::e4ed:31d3:3101:3265/64 scope link noprefixroute
       valid_lft forever preferred_lft forever
3: cilium_net@cilium_host: <BROADCAST,MULTICAST,NOARP,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000
    link/ether f6:e6:97:fa:8a:d9 brd ff:ff:ff:ff:ff:ff
    inet6 fe80::f4e6:97ff:fefa:8ad9/64 scope link
       valid_lft forever preferred_lft forever
4: cilium_host@cilium_net: <BROADCAST,MULTICAST,NOARP,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000
    link/ether 72:f7:bb:f9:31:0b brd ff:ff:ff:ff:ff:ff
    inet 10.0.0.172/32 scope global cilium_host
       valid_lft forever preferred_lft forever
    inet6 fe80::70f7:bbff:fef9:310b/64 scope link
       valid_lft forever preferred_lft forever
15: lxca13b12696333@if14: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000
    link/ether de:89:24:7b:86:e0 brd ff:ff:ff:ff:ff:ff link-netns cni-0253f30e-07bc-2273-640c-7ec96f0a30dd
    inet6 fe80::dc89:24ff:fe7b:86e0/64 scope link
       valid_lft forever preferred_lft forever
...

可以看到 cilium 和 lxc 相关的网卡, mtu 已经和 eth0 保持一致, 为: mtu 1500. 而在没启用之前, mtu 1280.

没启用本地路由, 使用VXLan 封装的 mtu 如下:

$ ip a
...
3: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000
    link/ether aa:94:b7:b4:25:ac brd ff:ff:ff:ff:ff:ff
    inet 192.168.2.44/24 brd 192.168.2.255 scope global dynamic noprefixroute eth0
       valid_lft 74264sec preferred_lft 74264sec
    inet6 240e:3a1:166d:dd70:4ea1:7c0c:13de:aa3/64 scope global dynamic noprefixroute
       valid_lft 208339sec preferred_lft 121939sec
    inet6 fe80::b0:3f98:e4e1:1d16/64 scope link noprefixroute
       valid_lft forever preferred_lft forever
6: cilium_net@cilium_host: <BROADCAST,MULTICAST,NOARP,UP,LOWER_UP> mtu 1280 qdisc noqueue state UP group default qlen 1000
    link/ether be:0f:af:14:c7:05 brd ff:ff:ff:ff:ff:ff
    inet6 fe80::bc0f:afff:fe14:c705/64 scope link
       valid_lft forever preferred_lft forever
7: cilium_host@cilium_net: <BROADCAST,MULTICAST,NOARP,UP,LOWER_UP> mtu 1280 qdisc noqueue state UP group default qlen 1000
    link/ether 1e:96:a5:af:3c:a3 brd ff:ff:ff:ff:ff:ff
    inet 10.0.0.109/32 scope global cilium_host
       valid_lft forever preferred_lft forever
    inet6 fe80::1c96:a5ff:feaf:3ca3/64 scope link
       valid_lft forever preferred_lft forever
98: lxc_health@if97: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1280 qdisc noqueue state UP group default qlen 1000
    link/ether 1a:41:2c:3b:18:0b brd ff:ff:ff:ff:ff:ff link-netnsid 0
    inet6 fe80::1841:2cff:fe3b:180b/64 scope link
       valid_lft forever preferred_lft forever
...

性能测试

通过 iperf 测试网络吞吐量. 来验证启用本地路由带来的性能提升. 我们使用 iperf3 来进行测试.

VM 间宽带

测试 VM 间原生带宽, apt 安装 iperf3:

sudo apt install -y iperf3

测试 VM 间宽带. 结果为:

$ iperf3 -c 192.168.2.3 -f M
Connecting to host 192.168.2.3, port 5201
[  5] local 192.168.2.26 port 32930 connected to 192.168.2.3 port 5201
[ ID] Interval           Transfer     Bitrate         Retr  Cwnd
[  5]   0.00-1.00   sec  1.02 GBytes  1047 MBytes/sec    0   3.12 MBytes
[  5]   1.00-2.00   sec  1.13 GBytes  1161 MBytes/sec    0   3.12 MBytes
[  5]   2.00-3.00   sec  1.12 GBytes  1150 MBytes/sec    0   3.12 MBytes
[  5]   3.00-4.00   sec  1.08 GBytes  1107 MBytes/sec    0   3.12 MBytes
[  5]   4.00-5.00   sec  1.17 GBytes  1194 MBytes/sec    0   3.12 MBytes
[  5]   5.00-6.00   sec  1.09 GBytes  1120 MBytes/sec    0   3.12 MBytes
[  5]   6.00-7.00   sec  1.10 GBytes  1128 MBytes/sec    0   3.12 MBytes
[  5]   7.00-8.00   sec  1.10 GBytes  1131 MBytes/sec    0   3.12 MBytes
[  5]   8.00-9.00   sec  1.18 GBytes  1211 MBytes/sec    0   3.12 MBytes
[  5]   9.00-10.00  sec  1.11 GBytes  1133 MBytes/sec    0   3.12 MBytes
- - - - - - - - - - - - - - - - - - - - - - - - -
[ ID] Interval           Transfer     Bitrate         Retr
[  5]   0.00-10.00  sec  11.1 GBytes  1138 MBytes/sec    0             sender
[  5]   0.00-10.00  sec  11.1 GBytes  1138 MBytes/sec                  receiver

iperf Done.

结果为 1138 MBytes/sec 带宽.

容器里部署 iperf3

测试 Cilium vxlan 封装和本地路由模式, 将 iperf3 部署为 Daemonset:

apiVersion: apps/v1
kind: DaemonSet
metadata:
   name: iperf3
   labels:
      app: iperf3
spec:
   selector:
      matchLabels:
        app: iperf3
   template:
      metadata:
         labels:
            app: iperf3
      spec:
         containers:
         -  name: iperf3
            image: clearlinux/iperf:3
            command: ['/bin/sh', '-c', 'sleep 1d']
            ports:
            - containerPort: 5201

结果如下:

$ k3s kubectl get pod -o wide
NAME           READY   STATUS    RESTARTS   AGE   IP           NODE          NOMINATED NODE   READINESS GATES
iperf3-dmqzb   1/1     Running   0          30s   10.0.0.13    cilium-62-1   <none>           <none>
iperf3-g84hd   1/1     Running   0          30s   10.0.2.239   cilium-62-3   <none>           <none>
iperf3-lnwfn   1/1     Running   0          30s   10.0.1.39    cilium-62-2   <none>           <none>

使用容器内 iperf3 测试

选择一个 pod 作为 server(cilium-62-2 node 上的为 server), 另一个作为 client(cilium-62-3 node 上的为client).

Server (iperf3-lnwfn) 运行的命令为:

kubectl exec -it iperf3-lnwfn -- iperf3 -s -f M

Client (iperf3-g84hd) 运行的命令为:

kubectl exec -it iperf3-g84hd -- iperf3 -c 10.0.1.39 -f M

VXLan 封装

VXLan 封装的情况:

$ kubectl exec -it iperf3-g84hd -- iperf3 -c 10.0.1.39 -f M
Connecting to host 10.0.1.39, port 5201
[  5] local 10.0.2.239 port 38102 connected to 10.0.1.39 port 5201
[ ID] Interval           Transfer     Bitrate         Retr  Cwnd
[  5]   0.00-1.00   sec   377 MBytes   377 MBytes/sec   46   1.19 MBytes
[  5]   1.00-2.00   sec   458 MBytes   457 MBytes/sec    0   1.31 MBytes
[  5]   2.00-3.00   sec   538 MBytes   538 MBytes/sec   46   1.43 MBytes
[  5]   3.00-4.00   sec   538 MBytes   537 MBytes/sec    0   1.49 MBytes
[  5]   4.00-5.00   sec   525 MBytes   525 MBytes/sec   14   1.50 MBytes
[  5]   5.00-6.00   sec   494 MBytes   494 MBytes/sec    0   1.51 MBytes
[  5]   6.00-7.00   sec   494 MBytes   494 MBytes/sec    0   1.51 MBytes
[  5]   7.00-8.00   sec   494 MBytes   494 MBytes/sec   33   1.52 MBytes
[  5]   8.00-9.00   sec   528 MBytes   528 MBytes/sec    0   1.53 MBytes
[  5]   9.00-10.00  sec   495 MBytes   495 MBytes/sec   46   1.54 MBytes
- - - - - - - - - - - - - - - - - - - - - - - - -
[ ID] Interval           Transfer     Bitrate         Retr
[  5]   0.00-10.00  sec  4.82 GBytes   494 MBytes/sec  185             sender
[  5]   0.00-10.00  sec  4.82 GBytes   493 MBytes/sec                  receiver

iperf Done.

结果为 493 MBytes/sec 左右带宽, 直接少了一半.

本地路由

$ kubectl exec -it iperf3-g84hd -- iperf3 -c 10.0.1.39 -f M
Connecting to host 10.0.1.39, port 5201
[  5] local 10.0.2.239 port 39518 connected to 10.0.1.39 port 5201
[ ID] Interval           Transfer     Bitrate         Retr  Cwnd
[  5]   0.00-1.00   sec  1.01 GBytes  1030 MBytes/sec   33   1.53 MBytes
[  5]   1.00-2.00   sec  1.16 GBytes  1191 MBytes/sec    0   2.01 MBytes
[  5]   2.00-3.00   sec  1.31 GBytes  1339 MBytes/sec    0   2.45 MBytes
[  5]   3.00-4.00   sec  1.28 GBytes  1312 MBytes/sec    0   2.79 MBytes
[  5]   4.00-5.00   sec  1.25 GBytes  1283 MBytes/sec    0   3.00 MBytes
[  5]   5.00-6.00   sec  1.28 GBytes  1310 MBytes/sec    0   3.00 MBytes
[  5]   6.00-7.00   sec  1.26 GBytes  1292 MBytes/sec    0   3.01 MBytes
[  5]   7.00-8.00   sec  1.31 GBytes  1337 MBytes/sec    0   3.01 MBytes
[  5]   8.00-9.00   sec  1.23 GBytes  1260 MBytes/sec    0   3.01 MBytes
[  5]   9.00-10.00  sec  1.28 GBytes  1308 MBytes/sec   92   3.01 MBytes
- - - - - - - - - - - - - - - - - - - - - - - - -
[ ID] Interval           Transfer     Bitrate         Retr
[  5]   0.00-10.00  sec  12.4 GBytes  1266 MBytes/sec  125             sender
[  5]   0.00-10.00  sec  12.4 GBytes  1266 MBytes/sec                  receiver

iperf Done.

结果为 1266 MBytes/sec. 和原生的相差无几.

小结

👍️ 禁用封装(隧道 tunnel)(本次测试为 VXLAN 封装模式), 启用本地路由, 确实可以提升网络最大吞吐量.

总结

在未提供任何配置的情况下,Cilium 会自动以封装(隧道 tunnel)模式运行,因为这种模式对底层网络基础设施的要求最低

在这种模式下,所有集群节点都会使用基于 UDP 的封装协议 VXLAN 或 Geneve 形成网状隧道。

由于增加了封装头,有效载荷可用的 MTU 要低于本地路由, 这导致特定网络连接的最大吞吐率降低。

启用本地路由(Native-Routing)可以避免这种情况, 但是启用对本地网络有一定要求. 本次我们通过 autoDirectNodeRoutes=true 方式来进行启用.

通过 iperf 测试, 也确实证明启用本地路由可以提升吞吐量.💪

📚️参考文档

  • Routing — Cilium 1.13.4 documentation
  • Installation using Helm — Cilium 1.13.4 documentation

三人行, 必有我师; 知识共享, 天下为公. 本文由东风微鸣技术博客 EWhisper.cn 编写.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/44152.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python数据分析实战-datafram按某(些)列按值进行排序(附源码和实现效果)

实现功能 Python对datafram按某&#xff08;些&#xff09;列进行排序&#xff08;附源码和实现效果&#xff09; 实现代码 import pandas as pd# 读取数据 datapd.read_csv(E:\数据杂坛\\UCI Heart Disease Dataset.csv) dfpd.DataFrame(data) print(df.head())# # 按某列的…

【干货分享】如何恢复SOLIDWORKS 零件、装配体和工程图模板?

当我们卸载了SOLIDWORKS或者是购买了一台新笔记本电脑或是丢失了一直在使用的模板时&#xff0c;我们可以通过打开过去的零件、装配体和工程图文件来恢复 SOLIDWORKS 模板。 ▷ 零件模板 打开包含所需自定义属性的上一个部件。 保存零件的副本以避免对原始文件进行意外更改。…

React:从 npx开始

使用 npm 来创建第一个 recat 文件&#xff08; react-demo 是文件名&#xff0c;可以自定义&#xff09; npx create-react-app react-demo npx是 npm v5.2 版本新添加的命令&#xff0c;用来简化 npm 中工具包的使用 原始&#xff1a; 全局安装npm i -g create-react-app 2 …

​《爆肝整理》保姆级系列教程-玩转Charles抓包神器教程(16)-Charles其他骚操作之大结局​

1.简介 今天就说一些Charles的其他操作、以及抓包跨域的问题和常见的问题如何解决。到此Charles这一系列的文章也要和大家说再见了&#xff0c;其他什么小程序、Android7.0等等的问题可以查看宏哥的Fiddler系列文章&#xff0c;只不过是将Fiddler换成Charles而已。 2.模拟403…

Qt - macOS 安装配置

文章目录 一、关于 QT1.2 Qt的发展史1.3支持的平台1.4 Qt版本1.5 Qt 的优点1.6 成功案例 二、软件安装1、保证已 Xcode 和 Command Line Tools2、下载 QT3、下载 [qtcreator](http://download.qt.io/official_releases/qtcreator/)查看qt版本 三、创建工程Qt 常见用法 四、基础…

83%的企业曾遭受固件攻击,仅29%分配了固件防护预算

近日&#xff0c;微软发布了名为[《Security Signals》的研究报告](https://www.microsoft.com/secured- corepc/assets/downloads/SecuritySignals_ThoughtPaper.pdf)。报告显示&#xff0c; 过去两年中&#xff0c;83&#xff05;的组织至少遭受了一次固件攻击&#xff0c;而…

第五讲:MySQL中DDL表的修改与删除

1、alter&#xff1a;改变 2、table&#xff1a;表 3、truncate&#xff1a;截断&#xff0c;删节 学习渠道&#xff1a;黑马程序员

excel中的vlookup如何实现根据多个条件查找?

目录 简述问题公式思路通用公式三条件查找公式实例 简述 Excel 中根据一个条件查找非常方便&#xff0c;Excel 提供了内置函数 VLOOKUP。但是实际中往往有多种情形&#xff0c;需要根据多个条件进行查找操作&#xff0c;目前没有现成的内置函数。 本篇介绍 VLOOKPCHOOSE 组合…

利用RLHF优化大模型:提升性能与应用能力

在数据科学不断发展的过程中&#xff0c;大模型在自然语言处理、图像识别、金融预测等各个领域的应用越来越广泛。然而&#xff0c;大模型的训练和优化也面临着越来越多的挑战&#xff0c;例如数据量过大、计算资源不足、超参数调整困难等。传统的机器学习算法往往难以处理这些…

基于whisper和whisperx的语音视频和字幕对齐

环境的安装 创建py310虚拟环境,需要安装Anaconda的Python环境。 Python初学者在不同系统上安装Python的保姆级指引 Win10+Python3.9+GPU版pytorch环境搭建最简流程 Python虚拟环境的安装和使用 还需要提前安装FFmpeg用于音频操作,并添加到环境变量中。 创建一个名称为w…

Kotlin~Proxy代理模式

概念 又称委托模式&#xff0c;充当中介代理的类。 特点&#xff1a;让一个对象控制另一个对象的访问&#xff0c;让代理充当其他事物的接口。 角色介绍 抽象目标类具体目标类代理类 UML 代码实现 按实现分为静态和动态代理 interface PhoneSell {fun sell() }class Main…

4K/8K AI巡检详解:风电巡检领域主动出击的监控厂商

最近&#xff0c;“北方高温”、“厄尔尼诺大烤”等词条频上热搜的背后&#xff0c;为应对气候变化挑战&#xff0c;全球正迎来一场波澜壮阔的绿色低碳转型浪潮。 而在“碳达峰、碳中和”政策背景下&#xff0c;风电行业肩负着重要的责任与使命。根据《中国可再生能源发展报告…

【JavaEE】基于Servlet与MySQL实现一个简易网站

目录 前言 一、实现表白墙的前期准备工作 1、约定前后端交互的接口 1.1、接口一&#xff1a;页面获取当前所有的留言消息 1.2、接口二&#xff1a;提交新消息给服务器 二、前端和后端代码的实现 1、数据的永久化保存 2、小结 前言 之前小编在写前端页面的时候&#x…

SkyWalking链路追踪中span全解

基本概念 在SkyWalking链路追踪中&#xff0c;Span&#xff08;跨度&#xff09;是Trace&#xff08;追踪&#xff09;的组成部分之一。Span代表一次调用或操作的单个组件&#xff0c;可以是一个方法调用、一个HTTP请求或者其他类型的操作。 每个Span都包含了一些关键的信息&am…

1.前端入门

文章目录 一、基础认知1.1 认识网页&#xff1a;1.2 五大浏览器1.3 Web标准 总结 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 一、基础认知 1.1 认识网页&#xff1a; 1.网页由哪些部分组成&#xff1f; 文字、图片、音频、视频、超链接。 2.我们…

(五)FLUX中的数据类型

以下内容来自 尚硅谷&#xff0c;写这一系列的文章&#xff0c;主要是为了方便后续自己的查看&#xff0c;不用带着个PDF找来找去的&#xff0c;太麻烦&#xff01; 第 5 章 FLUX中的数据类型 5.1 10 个基本数据类型 5.1.1 Boolean &#xff08;布尔型&#xff09; 5.1.1.1 …

sql进阶 之case表达式

case表达式 CASE表达式是SQL里非常重要而且使用起来非常便利的技术&#xff0c;我们应该学会用它来描述条件分支。本节将通过行列转换、已有数据重分组&#xff08;分类&#xff09;、与约束的结合使用、针对聚合结果的条件分支等例题&#xff0c;来介绍CASE表达式的用法。标红…

JAVA设计模式——23种设计模式详解

一、什么是设计模式&#x1f349; 设计模式&#xff08;Design pattern&#xff09; 是解决软件开发某些特定问题而提出的一些解决方案也可以理解成解决问题的一些思路。通过设计模式可以帮助我们增强代码的可重用性、可扩充性、 可维护性、灵活性好。我们使用设计模式最终的目…

MATLAB与ROS联合仿真——ROS环境搭建及相关准备工作(上)

本篇文章主要介绍在安装完ROS后&#xff0c;在进行MATLAB与ROS联合仿真之前&#xff0c;需要进行的一些环境搭建以及准备工作&#xff0c;主要分为 创建ROS工作空间及功能包、必备功能包安装、安装Gazebo11、导入实验功能包至工作空间、安装Visual_Studio_Code(选做)、常用便捷…

mac端数据库管理 Navicat Premium 15 for Mac v15.0.36

Navicat Premium 15是一款功能强大的数据库管理工具&#xff0c;由PremiumSoft CyberTech Ltd.开发。它提供了一个集成的界面&#xff0c;用于连接和管理多种不同类型的数据库&#xff0c;如MySQL、Oracle、SQL Server、PostgreSQL等。 Navicat Premium 15具有直观和用户友好的…