最新基于R语言lavaan结构方程模型(SEM)技术

原文链接:最新基于R语言lavaan结构方程模型(SEM)技术icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzUzNTczMDMxMg==&mid=2247596681&idx=4&sn=08753dd4d3e7bc492d750c0f06bba1b2&chksm=fa823b6ecdf5b278ca0b94213391b5a222d1776743609cd3d14bfbddf2623795f0a8edadf4e6&token=20152544&lang=zh_CN#rd

前沿

 结构方程模型(Sructural Equation Modeling,SEM)是分析系统内变量间的相互关系的利器,可通过图形化方式清晰展示系统中多变量因果关系网,具有强大的数据分析功能和广泛的适用性,是近年来生态、进化、环境、地学、医学、社会、经济等众多领域应用十分广泛的统计方法。在R语言结构方程程序包中,lavaan具有简洁的语法结构、成熟模型构建和调整过程和稳定可靠的结果等特点,使其不亚于收费商业软件,是最受欢迎的结构方程模型程序包之一。

一:R/Rstudio及入门
1)R及Rstudio:背景、软件及程序包安装、基本设置等
2)R语言基本操作,包括向量、矩阵、数据框及数据列表等生成和数据提取等
3)R语言数据文件读取、整理(清洗)、结果存储等(含tidverse)
4)R语言基础绘图(含ggplot):基本绘图、排版、发表质量绘图输出存储

图片

二:结构方程模型(SEM)
1)SEM的定义、生态学领域应用及历史回顾
2)SEM的基本结构
3)SEM的估计方法
4)SEM的路径规则
5)SEM路径参数的含义
6)SEM分析样本量及模型可识别规则
7)SEM构建基本流程

图片

三: lavaan包及应用案例
1)结构方程模型在生态学研究中的应用及要点回顾
2)lavaan简介、语法及结构方程模型分析入门
1)lavaan结构方程模型构建应用案例

(1)问题提出、元模型构建

(2)模型构建及模型估计

(3)模型调整:路径删减和增加原则

(4)模型评估:最优模型筛选

(5)结果表达

图片

四:lavaan潜变量分析
1)潜变量的定义、优势及应用背景分析
2)潜变量分析lavaan实现基本原理
3)案例1:单潜变量模型构建
4)案例2:多个潜变量模型构建

图片

五:lavaan复合变量(composite)分析
1)复合变量的定义及在生态学领域应用情景分析
2)复合变量分析lavaan实现途径
3)案例1:单复合变量构建
4)案例2:多复合变量构建

图片

六:lavaan处理非线性/非正态/缺失数据
1)非线性数据:外生变量及内生变量非线性关系
2)变量间交互作用关系分析
3)非正态数据vs非正态变量分析
4)缺失数据处理方法

图片

七:lavaan分类变量分析
1)分类变量
2)外生变量为分类变量分析
3)内生变量为分类变量分析

图片

八:lavaan分组数据(multigroup)分析
1)分组数据vs分类变量vs交互作用
2)数据分组分析实现途径
3)二分组及多分组模型分析及结果表达
4)包含潜变量模型分组分析

图片

九:lavaan嵌套/分层/多水平数据分析
1)嵌套/多水平/分层数据
2)嵌套/多水平/分层数据结构结方程模型实现途径:lavaan vs lavaan.survey
3)均衡和不均衡结构嵌套/多水平/分层数据结构方程实例
4)嵌套/多水平/分层数据潜变量模型

图片

十:lavaan重复测量和时间数据分析
1)时间重复测量数据特点
2)时间/重复测量数据的交叉滞后模型(Autoregressive Cross-Lagged Model)
3)时间/重复测量数据的生长曲线模型(Growth Curve Model)

图片

十一:lavaan空间自相关数据分析
1)数据空间自相关
2)lavaan处理空间自相关数据基本原理
3)lavaan处理空间自相关问题实例

图片

十二:lavaan非递归模型分析
1)递归模型与非递归模型区别
2)lavaan非递归模型分析注意事项及实现途径
3)lavaan非递归模型案例讲解 

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/441469.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Leetcode3070. 元素和小于等于 k 的子矩阵的数目

Every day a Leetcode 题目来源:3070. 元素和小于等于 k 的子矩阵的数目 解法1:二维前缀和 二维前缀和的模板题。 代码: /** lc appleetcode.cn id3070 langcpp** [3070] 元素和小于等于 k 的子矩阵的数目*/// lc codestart// 二维前缀和…

Web3探索加密世界:什么是Web3钱包?

随着加密货币和区块链技术的发展,人们越来越多地开始探索Web3世界,这个世界以去中心化、安全和开放性为特征。在这个新兴的数字化领域中,Web3钱包成为了一个关键的概念和工具。但是,什么是Web3钱包?它有什么特点&#…

二、TensorFlow结构分析(3)

目录 1、张量 1.1 张量的类型 1.2 张量的阶 1.3 创建张量的指令 2、张量的变换 3、张量的数学运算 TF数据流图图与TensorBoard会话张量Tensor变量OP高级API 1、张量 1.1 张量的类型 1.2 张量的阶 def tensor_demo():# 张量的演示tensor1 tf.constant(4.0)tensor2 tf.co…

IPSEC VPN安全介绍以及相关实验

目录 一、IPSEC相关的安全服务 二、IPSEC的安全协议 三、实验 IPSEC一组协议集合,用于确保在IP网络上进行通信时的安全性和保密性。它提供了一种标准化的方法,用于对IP数据包进行加密、身份验证和完整性保护。IPSEC通常用于建立虚拟私人网络VPN连接&am…

课时58:流程控制_基础知识_流程基础

2.1.1 流程基础 学习目标 这一节,我们从 基础知识、简单实践、小结 三个方面来学习。 基础知识 编程逻辑 编程语言的目的是通过风格化的编程思路将代码写出来后,实现项目功能的。为了实现功能,我们通过在代码层面通过一些代码逻辑来实现…

Dubbo 和 Zookeeper 的关系

Dubbo 和 Zookeeper 的关系 Zookeeper的作用 zookeeper用来注册服务和进行负载均衡,哪一个服务由哪一个机器来提供必需让调用者知道,简 单来说就是ip地址和服务名称的对应关系。当然也可以通过硬编码的方式把这种对应关系在调用方 业务代码中实现&#…

20240308-1-校招前端面试常见问题CSS

校招前端面试常见问题【3】——CSS 1、盒模型 Q:请简述一下 CSS 盒模型? W3C 模式:盒子宽widthpaddingbordermargin 怪异模式:盒子宽widthmargin Q:inline、block、inline-block 元素的区别? inline&am…

图片编辑器tui-image-editor

提示:图片编辑器tui-image-editor 文章目录 前言一、安装tui-image-editor二、新建components/ImageEditor.vue三、修改App.vue四、效果五、遇到问题 this.getResolve is not a function总结 前言 需求:图片编辑器tui-image-editor 一、安装tui-image-ed…

Jmeter二次开发实现rsa加密

jmeter函数助手提供了大量的函数,像 counter、digest、random、split、strLen,这些函数在接口测试、性能测试中大量被使用,但是大家在实际工作,形形色色的测试需求不同,导致jmeter自带或者扩展插件给我们提供的函数无法…

分布式定时任务调度xxl-job

1. xxl-job基本介绍 1.1 Quartz的体系结构 Quartz中最重要的三个对象:Job(作业)、Trigger(触发器)、Scheduler(调度器)。 xxl-job的调度原理:调度线程在一个while循环中不断地获取一定数量的即将触发的Tr…

从数据处理到3D PDF生成:交互式3D PDF生成引擎HOOPS Publish的工作原理

在当今数字化时代,3D技术在各个行业中扮演着重要角色,从制造业到医疗保健,再到建筑设计。为了更好地共享、演示和交互展示3D模型数据,HOOPS Publish作为一款强大的3D引擎,专门用于生成交互式的3D PDF文件。本文将深入探…

superset连接Apache Spark SQL(hive)过程中的各种报错解决

superset连接数据库官方文档:Installing Database Drivers | Superset 我们用的是Apache Spark SQL,所以首先需要安装下pyhive #命令既下载了pyhive也下载了它所依赖的其他安装包 pip install pyhive#多个命令也可下载 pip install sasl pip install th…

【xv6操作系统】Lab systems calls

一、实验前须知 阅读 xv6 文档的第 2 章和第 4 章的 4.3 节和 4.4 节以及相关源文件: 系统调用的用户空间代码在 user/user.h 和 user/usys.pl 中。 内核空间代码在 kernel/syscall.h 和 kernel/syscall.c 中。 与进程相关的代码在 kernel/proc.h 和 kernel/proc.c…

186基于matlab的信号盲源分离算法

基于matlab的信号盲源分离算法,包括变步长盲源分离(EASI),RLS(自然梯度和普通梯度),并将三种方法分离结果进行对比。程序已调通,可直接运行。 186 信号盲源分离算法 变步长盲源分离 (xiaohongshu.com)

【开源】SpringBoot框架开发河南软件客服系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 系统管理人员2.2 业务操作人员 三、系统展示四、核心代码4.1 查询客户4.2 新增客户跟进情况4.3 查询客户历史4.4 新增服务派单4.5 新增客户服务费 五、免责说明 一、摘要 1.1 项目介绍 基于JAVAVueSpringBootMySQL的河…

通过esp32cam拍摄图片上传至PC并通过YOLO进行目标检测

通过esp32cam拍摄图片上传至PC并通过YOLO进行目标检测 一.通过esp32cam拍摄照片并上传至PC二.训练自己的数据集三.AutoDL AI算力云的使用1.账号注册2.GPU选取3.GPU使用4.开机训练 四.数据集的使用 一.通过esp32cam拍摄照片并上传至PC 文章链接: https://blog.csdn.net/qq_6297…

Javaweb day13 day14 day15

spring boot 快速入门 写法 http协议 请求协议 响应协议 协议解析 Tomcat

leetcode72. 编辑距离

leetcode72. 编辑距离 题目 思路 dp[i][j] 代表 word1 到 i 位置转换成 word2 到 j 位置需要最少步数,所以, 当 word1[i] word2[j],dp[i][j] dp[i-1][j-1]; 当 word1[i] ! word2[j],dp[i][j] 1 min(dp[i-1][j-1]…

智慧灯杆-智慧城市照明现状分析(1)

城市道路照明是城市公共设施的重要组成部分,而随着城镇化建设的推进,城市道路照明路灯的数量越来越多,能耗越来越高,供电趋于紧张。此外,城市照明的维护工作和高昂的维护成本(人工控制、路灯巡查等),给城市管理造成了巨大的困难。管理部门需要更有效率的管理和节能方案…

Linux配置.bashrc文件导致各种命令(vim、sudo)失效。

Linux配置.bashrc文件导致各种命令(vim、sudo)失效。 起因是 nvcc-V一直报错:-bash:nvcc: command not found 踩坑记录:上网一查说是没有配置cuda的环境变量。于是去修改了bashrc文件,在最下面…