TCP重传机制、滑动窗口、拥塞控制

一、总述

TCP,Transmission Control Protocol,是一个面向连接、基于流式传输可靠传输协议,考虑到的内容很多,比如数据包的丢失、损坏、分片和乱序等,TCP协议通过多种不同的机制来实现可靠传输。今天,重点分析重传机制滑动窗口,以及拥塞控制

二、重传机制

在三握四挥的过程中,服务器和客户端之间就通过带有不同标志位的TCP报文来通知或判断对端或本地是否成功建立、断开连接。

接收主机在接收到数据之后往往都会返回一个应答消息,网络错综复杂,面对随时可能发生的数据丢失问题,TCP使用重传机制解决。常见的重传机制有以下四种:

  • 超时重传
  • 快速重传
  • SACK
  • D_SACK
(一) 超时重传

超时重传,顾名思义,在发送数据时,会设定一个定时器,当超过指定的时间过后,没有收到对端的ACK确认应答报文,就会重写发送该数据。而这又可以分为两种情况:

  • 数据包丢失
  • ACK确认应答丢失

在了解如何设置超时时间之前,先来看看什么是RTT(Round-Trip Time)往返时延

RTT,往返时延,数据从一端到另一端。其中,往返这个词是表明了什么范围是所需的时间。

知道了RTT,在来看点相关的:RTO,Retransmission Timeout,直译“超时重传时间”。这个时间的设置毫无疑问关系到我们重传机制的效率高低,看以下两种情况:

  • RTO>>RTT,重发慢,没有效率;
  • RTO<<RTT,包可能还没到就开始重发,重发出去的包数量多了,网络无疑会拥塞,超时的包越来越多,恶性循环。

那么结论显而易见——RTO的值,应该略大于RTT

很容易想到的是,报文往返的RTT值会是经常变化的,所以RTO也应该是一个动态变化的值。(在Linux中,通常会采样RTT的值然后加权算平均,不详细谈了)

而在超时时,TCP的策略是超时间隔加倍

(二) 快速重传

Fast Retransmit,快速重传,不以时间为驱动,而以数据驱动重传

在上图中,Seq2一直没有成功被接收方收到,当发送端收到三个Ack=2的确认,就会在定时器过期之前,重传丢失的Seq2

不过,发送方并不知道Ack=2是谁传回来的,那么是重传Seq2还是把之前的所有包都重传呢?根据TCP实现的不同,上述两种情况都是可能的。

(三) SACK

SACK是指Selective Acknowledgment,选择性确认,这种方式通过在TCP头部"选项"字段添加一个SACK,把缓存的地图发送给发送方,这样发送方就知道哪些数据需要重传了。


如果要支持SACK,双方都要支持,在Linux下,通过net.ipv4.tcp_sack这个参数打开(Linux2.4后默认打开)。

(四) Duplicate SACK

D_SACK,主要使用SACK来通知发送方有哪些数据被重复接收了,下面通过两个例子来说明,这个Duplicate到底有什么妙用。

  • ACK丢包

发送端通过ACK和SACK就可以明确,是发出去的包丢了还是接收方返回的ACK确认报文丢了

  • 网络延时

在判定网络延迟时,Duplicate的含义才更加明显地体现了出来,即复制的、完全一样的。

如上图中提及,在经历了网络延迟和三次相同ACK触发快速重传后,网络延迟的包终于送达,此时返回ACK=3000,SACK=1000~1500(注意之前的SACK范围总是大于ACK),就知道了这个SACK是D_SACK,是重复的包。

三、滑动窗口(流量控制)

(一) 滑动窗口

滑动窗口,Sliding Window,是一种流量控制机制,同时也是一种保持通信效率的技术。已知的是,每当有一个数据包发出,发送端总盼望得到一个ACK确认;那么要是在得到ACK之前不做任何动作,效率的高低明显可见。

为此,TCP引入了窗口的概念,通过指定窗口大小(数据最大值),来进行无需等待确认应答的通信

在实际实现时,是由操作系统开辟一个缓存空间。在发送方得到确认应答前,已发送的数据都会保存在缓冲区,如果按期收到确认应答,此时数据就可以从缓冲区清除。

如此一来,有了累计确认(或累计应答)模式:

  • 那么引申出一个问题——窗口的大小由哪一方决定?

TCP报头中有一个16位的字段:窗口尺寸Window,这个字段是由接收方通知发送方自己还有多少缓冲区可以用来接收数据。以免接收方无法正常接收到数据。

  • 发送方,滑动窗口分为4个部分

它的工作方式很容易想到:ACK确认一部分,可用窗口就扩大一部分;当发送窗口满了,在接收ACK之前就不再发送数据。

  • 接收方,滑动窗口分为3个部分

值得注意的是,两个窗口的大小是约等于的关系,而不是一模一样。因为滑动窗口不是一成不变的。如果接收方的读取速度有了很大提升,会通过TCP报文通知发送方新的窗口大小。

(二) 窗口关闭问题

TCP中,通过接收方指定窗口尺寸来进行流量控制。在通信中,当接收方窗口被填满,会向发送方说明窗口尺寸位0;等处理好数据后,才会又通告一个窗口非0的ACK报文。不过,要是这个非0报文丢失,就会陷入死锁的状态(双方同时等待)。

  • 窗口探测报文

为了解决这个问题,TCP为每个连接设置了一个持续计时器,只要收到0窗口通告,就启动计时器。当计时器超时,就会发送窗口探测报文,这个报文的用意显而易见。(窗口探测的次数一般是3次)。

(三) 糊涂窗口问题

糊涂窗口是指接收方在处理数据时的速度过慢,导致窗口的尺寸不断变小的现象。实际上就是两个动作让这个现象出现:

  • 接收方通告小窗口
  • 发送方发送小数据

想要避免这种现象,解决上述两个问题就好了。

  1. 在接收方,当窗口小于min(MSS, 缓存空间/2),就会告知对方0窗口,到后面合适的时机再通知非0窗口。
  2. 在发送方,使用Nagle算法进行延时处理,要等到发送窗口大小>=MSS,或者接收到ACK确认报文,才会停止囤积数据。这个算法是默认打开的,在使用telnet和ssh等交互性比较强的程序时,通过TCP_NODELAY来关闭。

四、拥塞控制

(一) 什么是拥塞

上文的流量控制是避免发送方的数据填满接收方的缓存,而拥塞控制,则是为了避免在整个网络环境处于拥堵时,还继续发送大量数据包的手段(可能导致数据包时延、丢失等,重传也会加重拥塞)。

那么很明显,拥塞控制是在发送端实现的。为了调节发送数据的量,定义了“拥塞窗口”的概念。

(二) 什么是拥塞窗口

拥塞窗口,是一个由发送方维护的状态变量,根据网络的拥塞程度动态变化。前面的发送窗口和接收窗口在有了拥塞窗口的加入以后,是这样的关系:

  • 发送=min(拥塞,接收)

拥塞窗口的动态变化也很简答:有拥塞,就变小;没拥塞,就变大。

(三) 如何判断拥塞

只要发送方没在规定的时间内接收到ACK确认报文(发生超时重传),就会认为网络出现了拥塞。

(四) 拥塞控制算法——慢启动

TCP在刚建立完连接后,会经历慢启动,逐步提高发送数据包的数量。规则是:

  • 发送方每收一个ACK,拥塞窗口cwnd的大小就增加1。

所以,这个增长是指数性的

那什么时候是个头呢?——当达到慢启动门限(slow start threshold)后,就会使用拥塞避免算法

(五) 拥塞避免算法

慢启动门限ssthresh一般的大小为65535字节,在进入拥塞避免算法后,窗口增长的规则是:

  • 每当收到一个ACK,cwnd增加1/cwnd。

如此一来,线性增长

在此后一直增长,网络就会进入拥塞的状态,出现丢包和丢包重传,触发了重传,也就进入了拥塞发生算法

(六) 拥塞发生

在上文提到过,重传的机制也有两种:1. 超时重传,2. 快速重传。接下来进行分述:

  • 超时重传的拥塞发生算法

ssthresh设置为cwnd/2,cwnd重置为1,然后重新开始慢启动。不过这种方式会突然减少数据流,可能网络卡顿(就像是急刹车)。

  • 快速重传的拥塞发生算法

在快速重传时,接收方发送三次前一个包的ACK通知发送端重传(大部分没丢,只丢了小部分)。

cwnd=cwnd/2,ssthresh=cwnd,然后进入快速恢复算法

(七) 快速恢复

快速重传一般和快速恢复算法同时使用,这种情况会判断网络情况并不是特别严峻,反映也不会像RTO那样强烈。

快速恢复算法

  • cwnd=ssthresh+3
  • 重传丢失的数据包
  • 如果再收到重复的ACK,cwnd+1
  • 如果收到新ACK(说明D_SACK时的数据全部收到,恢复过程结束),cwnd=ssthresh,恢复到之前二点拥塞避免状态

本文作为笔记,图片来源:

30 张图解: 面试必问的 TCP 重传、滑动窗口、流量控制、拥塞控制_面试回答 tcp流量控制-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/qq_34827674/article/details/105606205

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/440909.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

代码随想录算法训练营第三十九天|62.不同路径、63. 不同路径 II

62.不同路径 刷题https://leetcode.cn/problems/unique-paths/description/文章讲解https://programmercarl.com/0062.%E4%B8%8D%E5%90%8C%E8%B7%AF%E5%BE%84.html视频讲解https://www.bilibili.com/video/BV1ve4y1x7Eu/?vd_sourceaf4853e80f89e28094a5fe1e220d9062 题解&…

基于YOLOv5的无人机视角水稻杂草识别检测

&#x1f4a1;&#x1f4a1;&#x1f4a1;本文主要内容:详细介绍了无人机视角水稻杂草识别检测整个过程&#xff0c;从数据集到训练模型到结果可视化分析。 博主简介 AI小怪兽&#xff0c;YOLO骨灰级玩家&#xff0c;1&#xff09;YOLOv5、v7、v8优化创新&#xff0c;轻松涨点…

探讨2024年AI辅助研发的趋势

一、引言 随着科技的飞速发展&#xff0c;人工智能&#xff08;AI&#xff09;已经成为当今时代最具变革性的技术之一。AI的广泛应用正在重塑各行各业&#xff0c;其中&#xff0c;AI辅助研发作为科技和工业领域的一大创新热点&#xff0c;正引领着研发模式的深刻变革。从医药…

用WSGI发布flask到centos7.9

起因 想把自己的Flask或者Django网站&#xff0c;发布到服务器上&#xff0c;让大家都可以访问。网上搜的结果&#xff0c;要么是用NginxuWSGI&#xff0c;要么是用NginxGunicorn。大名鼎鼎的Nginx我早有耳闻&#xff0c;那么两位俩玩意是啥呢。 WSGI是什么 uwsgi是Nginx和w…

用pyqt5实现的滑动开关(有动画效果)

1、效果展示 2、控件源码 import sys from PyQt5.QtCore import Qt, QRect, QPoint, QVariantAnimation from PyQt5.QtGui import QPainter, QColor from PyQt5.QtWidgets import QApplication, QWidget, QHBoxLayoutclass SwitchButton(QWidget):def __init__(self, parent=N…

华为设备小型园区网方案(有线+无线+防火墙)

&#xff08;一&#xff09;配置有线部分 1.配置LSW2 &#xff08;1&#xff09;创建相关vlan [LSW2]vlan batch 10 3000 &#xff08;2&#xff09;配置连接LSW1的Eth-Trunk1&#xff0c;透传VLAN 10 3000 [LSW2]int Eth-Trunk 1 [LSW2-Eth-Trunk1]port link-type trunk [LSW2…

关于Linux上的$ORIGIN解说

1、Linux RPATH & $ORIGIN 许多现代C / C 项目都利用Autotools创建GNU构建系统&#xff0c;例如 根据平台生成make文件。 可执行文件&#xff08;二进制文件&#xff09;在生成/编译过程中生成&#xff0c;并且可以在执行编译的计算机上本地执行。 但是&#xff0c;如果将…

centos 系统 yum 无法安装(换国内镜像地下)

centos 系统 yum 因为无法连接到国外的官网而无法安装&#xff0c;问题如下图&#xff1a; 更换阿里镜像&#xff0c;配置文件路径&#xff1a;/etc/yum.repos.d/CentOS-Base.repo&#xff08;如果目录有多余的文件可以移动到子目录&#xff0c;以免造成影响&#xff09; bas…

【PyTorch][chapter 22][李宏毅深度学习]【无监督学习][ WGAN]【理论一】

简介&#xff1a; 2014年Ian Goodfellow提出以来&#xff0c;GAN就存在着训练困难、生成器和判别器的loss无法指示训练进程、生成样本缺乏多样性等问题。从那时起&#xff0c;很多论文都在尝试解决&#xff0c;但是效果不尽人意&#xff0c;比如最有名的一个改进DCGAN依靠的是对…

B端系统优化,可不是换个颜色和图标,看看与大厂系统的差距。

Hi&#xff0c;我是贝格前端工场&#xff0c;优化升级各类管理系统的界面和体验&#xff0c;是我们核心业务之一&#xff0c;欢迎老铁们评论点赞互动&#xff0c;有需求可以私信我们 一、不要被流于表面的需求描述迷惑。 很多人找我们优化系统界面&#xff0c;对需求总是轻描淡…

开源模型应用落地-工具使用篇-Ollama(六)

一、前言 在AI大模型百花齐放的时代&#xff0c;很多人都对新兴技术充满了热情&#xff0c;都想尝试一下。但是&#xff0c;实际上要入门AI技术的门槛非常高。除了需要高端设备&#xff0c;还需要面临复杂的部署和安装过程&#xff0c;这让很多人望而却步。不过&#xff0c;随着…

设计模式大题做题记录

设计模式大题 09年 上半年&#xff1a; 09年下半年 10年上半年 10年下半年 11年上半年 11年下半年 12年上半年 12年下半年 13年上半年 13年下半年

数据结构——lesson7二叉树 堆的介绍与实现

前言&#x1f49e;&#x1f49e; 啦啦啦~这里是土土数据结构学习笔记&#x1f973;&#x1f973; &#x1f4a5;个人主页&#xff1a;大耳朵土土垚的博客 &#x1f4a5; 所属专栏&#xff1a;数据结构学习笔记 &#x1f4a5;对于数据结构顺序表链表有疑问的都可以在上面数据结…

计算机中丢失缺少mfc100.dll文件该如何解决?

当你打开某个应用程序时&#xff0c;有时候会遇到一个“mfc100.dll丢失”或找不到mfc100.dll的错误信息提示。这种情况表明你的计算机缺少一个名为mfc100.dll的动态链接库文件。这个文件是由Microsoft VC 2010 Redistributable Package提供的&#xff0c;它是一组可重用的组件&…

普通专线维护成本太高?不如试试SD-WAN专线

企业数字化转型的加速&#xff0c;对于网络连接的需求变得越来越迫切。然而&#xff0c;传统的普通专线维护成本高、部署周期长等问题逐渐凸显&#xff0c;而SD-WAN&#xff08;软件定义广域网&#xff09;专线却因其灵活性和成本效益而备受关注。本文将探讨普通专线和SD-WAN专…

idea2023和历史版本的下载

1.idea中文官网 idea官网历史版本下载(https://www.jetbrains.com.cn/idea/download/other.html)

配置与管理NFS服务器

配置与管理NFS服务器 NFS&#xff1a;即网络文件系统&#xff0c;只提供网络文件共享&#xff0c;不提供数据传输 作用&#xff1a;可以是用户在异构网络操作系统之间进行文件系统共享 概述&#xff1a;客户机与服务器之间可以共享文件&#xff0c;但不可数据传输功能&#…

蓝桥杯-最长递增

思路及代码详解:(此题为容易题) #include <iostream> using namespace std; int main() {int a[1000]{0};int n,temp;int num0;int count0;cin>>n;for(int i0;i<n;i){cin>>a[i];}//输入数据tempa[0];//设置一个临时比较的存储变量for(int i1;i<n;i){i…

md5绕过

文章目录 \\和\\\md5数组绕过科学计数法绕过双md加密md5碰撞Hash长度攻击 下面会以同一道题给大家演示&#xff1a; (题目来源与nssctf) 和 在php代码中我们会看到和&#xff0c;虽然两个都是表示相等&#xff0c;但是在细节上会有所部区别 &#xff1a;是弱比较&#xff0c;只…

C++错误总结(1)

1.定义函数类型时&#xff0c;如果没有返回值&#xff0c;用void void swap(int &x, int &y){ int tem x; x y; y tem; } 2.输入时&#xff0c;不加换行符 cin >> a >> b >> c >> endl ;(红色标记的是错误的部分) 3.【逆序出入…