Linux---详解进程信号

0

进程信号

  • 🍳信号理解
    • 🧈什么是信号?
    • 🥞进程信号
    • 🥓查看系统信号
    • 🥩在技术角度理解信号
    • 🍗注意
  • 🍖信号处理
    • 🧇信号异步机制
  • 🍔信号产生
    • 🍟通过终端按键产生信号
    • 🥪signal函数注意事项
    • 🥙 通过系统接口完成发送信号
      • 🧆手写一个kill命令

🍳信号理解

🧈什么是信号?

  • 在生活中,有很多的例子,例如:红绿灯、旗语、铃声等等,这些东西都是给人传递一种特定信号的,如在交通中,红灯停,绿灯行。
  • Q:我们怎么知道红灯停绿灯行?
    A:通过学习,了解的!即使我们现在不在道路上,我们也知道这个常识,知道当这个信号出现时我们应该怎么处理,即使当前信号还没出现!

🥞进程信号

信号是给进程发送的,那么进程也有对应的信号处理的机制(这个好比我们知道交规一样,进程信号处理机制是程序员预先设定好的!),一样的道理,即便是信号还没有产生,但是进程已然存在对应信号的处理机制!

🥓查看系统信号

  • kill-l 命令
    0

🥩在技术角度理解信号

  1. 用户输入命令,在Shell下启动一个前台进程。
    . 用户按下 Ctrl-C ,这个键盘输入产生一个硬件中断,被OS获取,解释成信号,发送给目标前台进程
    . 前台进程因为收到信号,进而引起进程退出
[hb@localhost code_test]$ cat sig.c
#include <stdio.h>
int main()
{
while(1){
printf("I am a process, I am waiting signal!\n");
sleep(1);
}
}
[hb@localhost code_test]$ ./sig
I am a process, I am waiting signal!
I am a process, I am waiting signal!
I am a process, I am waiting signal!
^C
[hb@localhost code_test]$

假设你是一个进程,而快递员代表操作系统。你的任务是一直等待快递员送信号(快递)给你。在这里,快递员相当于操作系统,会向你发送各种信号,如Ctrl-C信号。
代码中的while(1)表示你一直在等待,就像一直在家里等待快递。每秒你都打印出一条消息:“I am a process, I am waiting signal!”,表示你不断地检查是否有快递到达。
当你收到了Ctrl-C信号时(就像快递员按响了你家门铃),你会看到在终端上出现"^C",并且你的程序会终止执行。
这就是代码信号处理过程的模拟。你作为一个进程一直在等待信号,而操作系统会发送不同的信号给你,如Ctrl-C信号,你需要对这些信号做出相应的处理,比如终止程序的执行。
总结来说,代码中的进程等待信号的过程就像你一直在家等待快递的到来。当操作系统发送信号给你,你需要对信号做出相应的处理,就像按下了门铃后你会去开门签收快递。不同的信号可以触发不同的处理动作,让你的程序做出相应的反应。

🍗注意

  1. Ctrl-C 产生的信号只能发给前台进程。一个命令后面加个&可以放到后台运行,这样Shell不必等待进程结束就可以接受新的命令,启动新的进程。
  2. Shell可以同时运行一个前台进程和任意多个后台进程,只有前台进程才能接到像 Ctrl-C 这种控制键产生的信号。
  3. 前台进程在运行过程中用户随时可能按下 Ctrl-C 而产生一个信号,也就是说该进程的用户空间代码执行到任何地方都有可能收到 SIGINT 信号而终止,所以信号相对于进程的控制流程来说是异步(Asynchronous)的

🍖信号处理

🧇信号异步机制

  • 什么是异步?

异步是指事件之间不需要严格的同步和等待,而是可以独立地进行处理。在异步操作中,一个事件的触发并不会导致程序的立即停顿或阻塞,而是允许程序继续执行其他任务,而后在合适的时间点再去处理该事件或结果。
异步操作通常用于处理耗时较长的任务,如网络请求、文件读写、数据库查询等。在传统的同步操作中,当执行这些耗时任务时,程序会一直等待任务完成才能继续执行后续代码。而在异步操作中,程序可以先发起这些耗时任务,然后继续执行其他代码,等待任务完成后再进行后续处理。
异步操作可以提高程序的响应性能和效率,尤其在涉及到多任务并行处理的场景下,异步操作能够更好地利用系统资源和提高系统的并发能力。
在编程中,异步操作通常通过回调函数、事件驱动机制、多线程或异步IO等方式来实现。一些编程语言和框架提供了异步编程的支持,使得开发者能够更方便地处理异步操作。

== 因为信号的产生是异步的,当一个信号产生的时候,对应的进程可能正在处理其他的更加重要的事情,那么进程可以暂时不去处理这个信号 ==

当一个信号产生时 进程可能执行的操作:

  • 🦴处理信号
  1. 默认动作
  2. 忽略
  3. 自定义函数处理
  • 🌭暂时不处理 (标记)

在操作系统中,当进程收到信号后,如果不设置忽略,操作系统会在进程的 PCB(进程控制块)中记录该信号的待处理状态。这通常通过在 PCB 中的位图(或类似的数据结构)来实现。

在 Linux 中,进程的 PCB 数据结构中有一个名为 sigpending 的位图,用于表示当前已经到达但还未处理的待处理信号。当进程收到信号但还未处理时,相应信号的位会被设置为 1。一旦进程开始处理该信号,操作系统会将对应位重新设置为 0,表示信号已经处理完成。

具体来说,sigpending 位图在 PCB 数据结构中用于存储当前进程收到但还未处理的信号。当进程收到信号时,相应信号的位会被设置为 1,表示信号已经到达。当进程准备处理信号时,会检查 sigpending 位图,找到所有待处理的信号,并依次处理它们。处理完成后,相应信号的位会被重新设置为 0,表示信号已经处理完毕。

这样,即使进程在收到信号后没有立即处理,操作系统也能够记录信号的状态,并在适当的时候通知进程处理相应的信号。这种方式实现了异步信号处理,允许进程在合适的时候处理优先级较高的信号,而不会被阻塞在处理低优先级的信号上。

🍔信号产生

🍟通过终端按键产生信号

  • man 2 signal 查看函数
    2

  • signal函数是用于在Unix/Linux系统中设置信号处理函数的函数。它允许我们指定在收到指定信号时应该执行的处理函数,从而实现对信号的处理。

  • 函数原型

#include <signal.h>

void (*signal(int signum, void (*handler)(int)))(int);

  • 🍕参数说明:
  1. signum:指定要设置处理函数的信号的编号。可以使用预定义的宏(如SIGINT、SIGTERM等),也可以使用对应的信号编号。例如,SIGINT表示用户键入Ctrl+C产生的中断信号。
  2. handler:指定要注册的信号处理函数。它是一个函数指针,指向一个形如void func(int)的函数,该函数接收一个整数参数(表示信号编号)并无返回值。
  3. 函数的返回值是一个函数指针,表示之前注册的处理函数。
  • 使用signal函数时,一般会先定义一个自定义的信号处理函数,然后通过signal函数将其注册到指定的信号上。当进程收到相应的信号时,操作系统会调用该信号处理函数来处理该信号。函数回调机制在这里体现在信号发生时,系统通过函数指针调用我们提供的处理函数。

  • 测试代码

#include <stdio.h>
#include <signal.h>

void sigHandler(int signum) {
    printf("Received signal %d\n", signum);
}

int main() {
    // 注册SIGINT信号处理函数为sigHandler
    //只是注册 当singint产生的时候才会被调用,如果不产生,就不会被调用
    signal(SIGINT, sigHandler);

    printf("Waiting for SIGINT...\n");
    while (1) {
        // 进程持续运行,等待信号发生
    }

    return 0;
}


在上述示例中,当用户在终端中按下Ctrl+C(产生SIGINT信号)时,进程会调用sigHandler函数来处理该信号,并输出"Received signal 2"(因为SIGINT的编号是2)。

注意:使用signal函数时,需要注意信号的可重入性问题。在一些情况下,建议使用更加安全可靠的sigaction函数来替代signal函数。

  • 结果
    在这里插入图片描述

🥪signal函数注意事项

signal函数可以自定义信号的处理机制,如上面所示,当在终端按下Ctrl+c(也就是2号进程)时会打印一个: Received signal 2 这就是我们的自定义行为

那么所有的信号都可以被自定义吗?
答案:不是 9号信号不可以被定义 (管理员信号 )

Linux中的9号信号是SIGKILL,也称为强制终止信号。SIGKILL用于立即终止一个进程,并且该信号无法被捕获或忽略。当进程收到SIGKILL信号时,它会立即终止,不会有任何处理和清理工作。
通常情况下,应该避免直接使用SIGKILL信号来终止进程,除非有特殊原因需要强制终止进程。因为进程没有机会进行资源清理和善后工作,可能会导致数据丢失或其他不稳定的情况。
相比之下,可以使用SIGTERM信号来通知进程进行正常退出,这样进程有机会在收到信号后进行资源释放和善后工作,保证系统的稳定性。

🥙 通过系统接口完成发送信号

  • man 2 kill
    5
    在Linux和类Unix操作系统中,kill函数用于向指定进程发送信号。它可以用来发送预定义的信号,如终止进程、中断进程、挂起进程等。

函数原型如下

#include <signal.h>

int kill(pid_t pid, int sig);

参数说明:

  1. pid: 指定目标进程的进程ID。可以是正整数表示目标进程的进程ID,也可以是负整数:
  2. 正整数:发送信号给指定进程ID的进程。
  3. 0:发送信号给当前进程组中的所有进程。
  4. -1:发送信号给系统中的所有进程,除了init进程(进程ID为1)和调用进程的父进程。
  5. 负整数:发送信号给指定进程组ID的所有进程(进程组ID为-pid)。
  6. sig: 指定要发送的信号编号。可以是预定义的信号宏,也可以是自定义的信号编号。

🧆手写一个kill命令

//手写一个kill命令
static void Usage(const std::string &proc)
{
    cerr<<"Usege:\n\t"<<proc<<"signo pid"<<endl;
}
int main(int argc,char *argv[]) {
 
    if(argc!=3)
    {
        Usage(argv[0]);
        exit(1);
    }
    if(kill(static_cast<pid_t>(atoi(argv[2])),atoi(argv[1]))==-1) //类型转换 调用函数
    {
        //失败报错
        cerr<<"kill"<<strerror(errno)<<endl;
        exit(2);
    }


    return 0;
}

  • 代码解释:

if (argc != 3): 这行代码判断命令行参数的数量是否为3,即程序名本身和两个额外参数。如果不是3个参数,说明用户输入有误,程序没有正确使用,因此调用Usage函数输出使用方法,并通过exit(1)终止程序运行。

kill(static_cast<pid_t>(atoi(argv[2])), atoi(argv[1])): 这行代码使用kill函数向目标进程发送信号。argv[2]是第二个命令行参数,即目标进程的进程ID,通过atoi函数将字符串转换为整数,并使用static_cast<pid_t>进行类型转换,以满足kill函数的参数要求。argv[1]是第一个命令行参数,即要发送的信号编号,也通过atoi函数将字符串转换为整数。最终调用kill函数发送信号,如果发送失败,kill函数会返回-1,此时程序会输出相应的错误信息,使用cerr输出错误消息,然后通过exit(2)终止程序运行。

总的来说,这段代码用于向指定进程发送信号,并根据发送结果输出相应的错误信息,是一个简单的进程通信示例

  • 代码测试
    test
using namespace std;
#include<iostream>
#include <sys/types.h>
#include <unistd.h>
int main()
{
    while(1)
    {
        cout<<"这是一个进程,pid是:"<<getpid()<<endl;
    }
    return 0;
}
  • 运行结果
    11
    成功~
    00

🌮 🌯 🥗 🥘 🍝 🍜 🍲 🍛 🍣 🍱 🥟 🦪 🍤 🍙 🍚 🍘 🍥 🥠 🥮 🍢 🍡 🍧 🍨 🍦 🥧 🧁 🍰 🎂 🍮 🍭 🍬 🍫 🍿

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/43927.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vue中使用jsMind生成思维导图 截图功能踩坑

npm i jsmind先安装&#xff0c;再引入 import jsmind/style/jsmind.css import jsMind from jsmind/js/jsmind.js require(jsmind/js/jsmind.draggable.js) require(jsmind/js/jsmind.screenshot.js)正常引入是这样的&#xff0c;然后渲染也没问题 <template><div …

如何打开工业相机(海康)与halcon方式打开

使用海康相机&#xff0c;下载对应的客户端软件 地址&#xff1a;https://www.hikrobotics.com/cn/machinevision/service/download 界面如下&#xff1a; 使用 halcon 读取相机&#xff0c;需要将对应的动态链接库dll文件放入halcon的安装目录中&#xff0c;如下&#xff0c;…

全志F1C200S嵌入式驱动开发(spi-nor驱动)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 和v3s一样,f1c200s本身也支持spi-nor flash。当然,不管是norflash,还是nandflash,都是为了能够让程序脱离sd卡,直接依靠板子上面的flash,就可以完成正常地加载和运行工作。tf…

MySQL数据库优化

MySQL数据库优化 1.1 SQL及索引优化1.2 数据库表结构优化1.3 系统配置优化1.4 硬件配置优化 2 SQL及索引优化2.1 慢查日志2.1.1 检查慢查日志是否开启2.1.2 MySQL慢查日志的存储格式 2.2 MySQL慢查日志分析工具&#xff08;mysqldumpslow&#xff09;2.2.1 介绍2.2.2 用法 2.3 …

二进制子集题解

样例输入&#xff1a; 13样例输入&#xff1a; 0 1 4 5 8 9 12 13思路分析&#xff1a; 这道题大体就是进制转换然后按位 d f s dfs dfs。进制转换比较好理解&#xff0c;不懂得可以自行 b d f s ( 百度优先搜索 ) bdfs(百度优先搜索) bdfs(百度优先搜索)一下。 代码&#…

索引的数据结构

索引的数据结构 部分资料来自B站尚硅谷-宋红康老师 1. 为什么使用索引 使用索引是为了加快数据库的查询速度和提高数据库的性能。索引是数据库表中的一种数据结构&#xff0c;它可以帮助数据库快速定位并检索所需的数据。 当数据库表中的数据量较大时&#xff0c;如果没有索…

C#中简单Winform程序编译(待验证)

1、文件架构 2、MainWindow.xaml <Window x:Class"WpfApp1.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"http://schemas.microsoft.…

【仿写spring】一、通过反射读取带有@RequestMapping与@Controller注解的类并模拟请求路径调用方法

目录 简介思路实践一、自定义注解RequestMapping&#xff0c;Controller二、路径转全限定名方法三、扫描文件夹四、通过反射来寻找有RequestMapping以及Controller的类五、获取对象实例六、通过invoke调用方法 文件结构以及测试结果1、文件结构2、TestController3、测试结果 简…

C#is、as关键字及获取当前活动窗体的实例

这篇日志记录一下C#中is关键字及as关键字的用法。 Is&#xff1a;判断检查对象是否与给定类型兼容 As&#xff1a;将对象转换为指定类型&#xff08;强转&#xff09;&#xff0c;就跟&#xff08;int&#xff09;这样的用法是一样的。 获取当前窗体的活动子窗体。 有一个属…

MATLAB与ROS联合仿真——Simulink生成ROS代码

当我们用simulink完成控制程序的搭建后&#xff0c;我们期望下一次可以直接对ROS进行控制&#xff0c;而不是每次都需要启动matlab和simulink&#xff0c;因此我们可以使用simulink的代码生成器&#xff0c;生成ROS代码 1、生成代码前需要进行如下的设置 &#xff08;1&#xf…

Thanos工作原理及组件简介

Thanos 简介 Thanos 是一个「开源的&#xff0c;高可用的 Prometheus 系统&#xff0c;具有长期存储能力」。很多知名公司都在使用 Thanos&#xff0c;也是 CNCF 孵化项目的一部分。 Thanos 的一个主要特点就是通过使用对象存储&#xff08;比如 S3&#xff09;可以允许 “无…

Training-Time-Friendly Network for Real-Time Object Detection 论文学习

1. 解决了什么问题&#xff1f; 目前的目标检测器很少能做到快速训练、快速推理&#xff0c;并同时保持准确率。直觉上&#xff0c;推理越快的检测器应该训练也很快&#xff0c;但大多数的实时检测器反而需要更长的训练时间。准确率高的检测器大致可分为两类&#xff1a;推理时…

Sentinel nacos spring cloud 持久化配置---分布式/微服务流量控制

文章目录 sentinel控制台安装目标实现代码地址版本说明maven spring-cloud-starter-alibaba-sentinel依赖yml文件Nacos业务规则配置看源码配置规则SentinelProperties 总配置加载DataSourcePropertiesConfiguration 配置标准的nacos配置注册具体sentinel配置 外传 sentinel控制…

MySQL:MHA高可用

目录 1&#xff0e;什么是 MHA 2&#xff0e;MHA 的组成 3&#xff0e;MHA 的特点 4、MHA工作原理 5、搭建 MySQL MHA 5.1 实验思路 5.1.1 MHA架构 5.1.2 故障模拟 5.2 实验环境 5.3 准备工作 5.4 安装MHA所有组件与测试 5.4.1 安装 MHA 软件 5.4.2 manager与node工…

OpenCV:图像直方图计算

图像直方图为图像中像素强度的分布提供了有价值的见解。通过了解直方图&#xff0c;你可以获得有关图像对比度、亮度和整体色调分布的信息。这些知识对于图像增强、图像分割和特征提取等任务非常有用。 本文旨在为学习如何使用 OpenCV 执行图像直方图计算提供清晰且全面的指南。…

JVM系统优化实践(22):GC生产环境案例(五)

您好&#xff0c;这里是「码农镖局」CSDN博客&#xff0c;欢迎您来&#xff0c;欢迎您再来&#xff5e; 除了Tomcat、Jetty&#xff0c;另一个常见的可能出现OOM的地方就是微服务架构下的一次RPC调用过程中。笔者曾经经历过的一次OOM就是基于Thrift框架封装出来的一个RPC框架导…

swagger对json数据的处理

在实习中遇到了一个不寻常的事情&#xff0c;今天和同事讨论一个小问题&#xff0c;同事使用swagger&#xff0c;想要调用一个接口&#xff0c;这个接口要传递一个json对象&#xff0c;对应java的一个实体类&#xff0c;但是有一个属性同事不想看到它&#xff0c;就用JsonIgnor…

【学会动态规划】按摩师(11)

目录 动态规划怎么学&#xff1f; 1. 题目解析 2. 算法原理 1. 状态表示 2. 状态转移方程 3. 初始化 4. 填表顺序 5. 返回值 3. 代码编写 写在最后&#xff1a; 动态规划怎么学&#xff1f; 学习一个算法没有捷径&#xff0c;更何况是学习动态规划&#xff0c; 跟我…

【Linux】信号保存信号处理

前言&#xff1a;对信号产生的思考 上一篇博客所说的信号产生&#xff0c;最终都要有OS来进行执行&#xff0c;为什么&#xff1f;OS是进程的管理者&#xff01;信号的处理是否是立即处理的&#xff1f;在合适的时候 -》那什么是合适的时候&#xff1f;信号如图不是被立即处理…