利用GPT开发应用001:GPT基础知识及LLM发展

文章目录

  • 一、惊艳的GPT
  • 二、大语言模型LLMs
  • 三、自然语言处理NLP
  • 四、大语言模型LLM发展

一、惊艳的GPT

  想象一下,您可以与计算机的交流速度与与朋友交流一样快。那会是什么样子?您可以创建哪些应用程序?这正是OpenAI正在助力构建的世界,他们的GPT模型为我们的设备带来了类似人类对话能力的功能。

  GPT的全称,是Generative Pre-Trained Transformer(生成式预训练Transformer模型)是一种基于互联网的、可用数据来训练的、文本生成的深度学习模型。GPT与专注于下围棋或机器翻译等某一个具体任务的“小模型”不同,AI大模型更像人类的大脑。它兼具“大规模”和“预训练”两种属性,可以在海量通用数据上进行预先训练,能大幅提升AI的泛化性、通用性、实用性。

  作为人工智能(AI)领域的最新进展,GPT-4(Generative Pre-trained Transformer - 4)和ChatGPT(Chat Generative Pre-trained Transformer)是基于大量数据训练的大型语言模型(Large Language Models - LLMs),使它们能够以非常高的准确性识别和生成类似人类的文本。

  这些人工智能模型的影响远不止于简单的语音助手。得益于OpenAI的模型,开发者现在可以利用自然语言处理(Natural Language Processing - NLP)的力量创建了解我们需求的应用程序,这在过去曾是科幻小说。从学习并适应的创新客户支持系统到理解每个学生独特学习风格的个性化教育工具,GPT-4和ChatGPT打开了一个全新的可能性世界。

  但GPT-4和ChatGPT究竟是什么?我们需要深入探讨这些AI模型基础知识、起源和关键特征。通过理解这些模型的基本原理,您将为基于这些新强大技术构建下一代应用程序迈出重要的一步。


二、大语言模型LLMs

  作为大语言模型(Large Language Models - LLMs),GPT-4和ChatGPT是自然语言处理(Natural Language Processing - NLP)领域最新的模型类型,而NLP本身是机器学习(Machine Learning - ML)人工智能(AI)的一个子领域。因此,在我们深入了解GPT-4和ChatGPT之前,让我们快速了解一下NLP和其他相关领域。

  对于人工智能有不同的定义,但其中一个更多或少得到共识的说法是,人工智能指的是开发能够执行通常需要人类智能的任务的计算机系统。根据这个定义,许多算法都属于人工智能范畴。比如,在GPS应用中的交通预测任务或者战略视频游戏中使用的基于规则的系统。从外部看,这些例子中,机器似乎需要智能来完成这些任务。

  机器学习(Machine Language - ML)是人工智能(AI)的一个子集。在机器学习中,我们不试图直接实现人工智能系统所使用的决策规则。相反,我们尝试开发算法,让系统能够通过示例自我学习。自从上世纪50年代开始进行机器学习研究以来,许多机器学习算法已经在科学文献中被提出。其中,深度学习(Deep Learning - DL)算法是机器学习模型的著名示例,而GPT-4和ChatGPT是基于一种称为transformers的特定类型深度学习算法。下图展示了这些术语之间的关系。

在这里插入图片描述

三、自然语言处理NLP

  自然语言处理(Natural Language Processing - NLP)是一种人工智能应用,专注于计算机与自然人类语言文本之间的交互。现代NLP解决方案基于机器学习算法。NLP的目标是让计算机理解自然语言文本。这一目标涵盖了广泛的任务:

  • 文本分类
    将输入的文本划分为预定义的组别。例如,包括情感分析和主题分类等任务。

  • 自动翻译
    将文本从一种语言自动翻译成另一种语言。

  • 问答
    根据给定的文本回答问题。

  • 文本生成
    基于给定的输入文本(称为提示),模型生成连贯和相关的输出文本。


四、大语言模型LLM发展

  正如前面提到的,大语言模型(Large Language Models - LLM)是一种试图解决文本生成任务的机器学习模型。LLMs使计算机能够理解、解释和生成人类语言,从而实现更加有效的人机交流。为了做到这一点,LLMs分析或训练大量的文本数据,从而学习句子中单词之间的模式和关系。通过给定输入文本,这种学习过程使LLMs能够对最有可能出现的下一个单词进行预测,并以此方式生成对文本输入有意义的回应。最近几个月发布的现代语言模型非常庞大,并且经过了大量的文本训练,它们现在可以直接执行大多数NLP任务,如文本分类、机器翻译、问答等。GPT-4和ChatGPT模型是两种在文本生成任务上表现优异的现代LLMs。

  LLMs的发展可以追溯到数年前。它始于简单的语言模型,比如n-gram模型,它试图基于前面的单词来预测句子中的下一个单词。n-gram模型使用频率来实现这一点。预测的下一个单词是在它训练过的文本中跟随前面单词最频繁出现的单词。虽然这种方法是一个良好的开端,但它需要在理解上下文和语法方面有所改进,以避免生成不一致的文本。

  为了提高这些n-gram模型的性能,引入了更先进的学习算法,包括循环神经网络(Recurrent Neural Networks - RNN)长短期记忆网络(long short term memory networks - LSTM)。这些模型能够学习更长的序列并比n-gram模型更好地分析上下文,但它们仍然需要帮助以高效处理大量数据。这些类型的循环模型长时间以来一直是最高效的模型,因此在自动机器翻译等工具中被广泛使用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/436182.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Ethersacn的交易数据是什么样的(2)

分析 Raw Transanction RLP(Recursive Length Prefix)是一种以太坊中用于序列化数据的编码方式。它被用于将各种数据结构转换为二进制格式,以便在以太坊中传输和存储。RLP 是一种递归的编码方式,允许对复杂的数据结构进行编码。所…

word如何实现不同章节显示不同页眉

一、问题描述 写论文时遇到如下情形,第二章页眉跟第一章一样,如下图 二、解决方法 在第二章前一页空白处,选择依次布局→分隔符→下一页,如下图 双击第二章页眉,进入页眉编辑状态,点击链接到前一节按钮&a…

SOC设计:关于时钟门控的细节

有如下几个信号 输入信号 1、同步后的rstnsync_clk 2、时钟:clk 3、test_mode 4、软件控制信号:clk_sub_en 输出信号 1、clk_sub 功能:软件配置的使能信号clk_sub_en经过时钟clk 2拍同步处理后产生clk 域下的enable信号,然…

2024年腾讯云服务器99元一年,最新价格整理

腾讯云服务器99元一年是真的吗?真的,只是又降价了,现在只要61元一年,配置为2核2G3M轻量应用服务器,40GB SSD盘,腾讯云百科txybk.com分享腾讯云官方活动购买链接 https://curl.qcloud.com/oRMoSucP 活动打开…

Python编程实验六:面向对象应用

目录 一、实验目的与要求 二、实验内容 三、主要程序清单和程序运行结果 第1题 第2题 四、实验结果分析与体会 一、实验目的与要求 (1)通过本次实验,学生应掌握类的定义与对象的创建、类的继承与方法的覆盖; (2…

鸿道Intewell-Win_V2.1.3_kyland软件版本发布说明

一、软件发布版本信息 版本号:V2.1.3_kyland 版本发布类型:trail试用版本 二、版本特点 适配 E211-1370(J6412,8GB,256GB SSD)设备 三、运行环境推荐 Intewell developer可以运行在windows7及windows10 64位 四、支…

程序员书单推荐:从入门到精通的必读之作

在程序员的职业生涯中,阅读技术书籍是不断学习和提升自我的重要途径。本文将为你推荐一系列从入门到精通的程序员书单,帮助你系统地掌握编程知识、提高技能水平,并在职业生涯中取得更大的进步。 一、入门篇 《Head First C语言》&#xff1…

掌握流量主变现秘诀!视频号”今日话题”赛道,详解保姆式教学一体化实操玩法,助你轻松驾驭!

其实,这个领域的制作相当简单。 只需按照下面我提供的教程操作,基本上十分钟内就能完成一个视频。 掌握流量主变现秘诀!视频号”今日话题”赛道,详解保姆式教学一体化实操玩法,助你轻松驾驭! 就收益而言,…

何为时间复杂度和空间复杂度

时间复杂度和空间复杂度是用来评估算法性能的两个重要指标。 1. **时间复杂度**: - 时间复杂度描述了算法执行所需的时间量随输入数据规模的增加而增加的趋势。通常用大O符号(O)表示,表示算法的渐近上界。例如,O(n…

STM32(8)NVIC编程

中断源由部分片上外设产生 在misc.h中找,杂项 配置NVIC GPIO和AFIO不能产生中断源,但能通过EXTI,由EXTI产生中断源 NVIC不需要开启时钟,因为NVIC模块位于内核内部,芯片一上电就能工作。 中断响应函数 中断向量表在启…

rtthread stm32h743的使用(七)dac设备使用

我们要在rtthread studio 开发环境中建立stm32h743xih6芯片的工程。我们使用一块stm32h743及fpga的核心板完成相关实验,核心板如图: 1.我们还是先建立工程 2.生成工程后打开mx进行配置,时钟配置如前所讲,不在赘述 3.更改mx文件…

观其大略之HybridCLR学习笔记

问题背景 1 现有热更方案的开发效率、性能没有到达极限,还有提升的空间 2 ios多平台政策导致热更新受限问题,ios禁止jit。根据我查找的资料,ios的代码段启动的时候就确定了,不能增加新的代码段。IOS封了内存(或者堆&…

你不得不知道的Python AI库

Python是人工智能(AI)和机器学习(ML)领域中使用最广泛的编程语言之一,拥有丰富的库支持各种AI和ML任务。本文介绍一些经典的Python AI库。 1. NumPy 简介:NumPy(Numerical Python)…

开源工业软件:SCADA系统开源

PyScada是一个开源的scada系统 源代码地址 http://www.gitpp.com/huangtomy/pyscada-cn SCADA系统是Supervisory Control And Data Acquisition的缩写,即数据采集与监视控制系统。它是以计算机为基础的DCS与电力自动化监控系统,应用领域非常广&#x…

LeetCode.2917. 找出数组中的 K-or 值

题目 2917. 找出数组中的 K-or 值 分析 这道题其实是要我们求第i位二进制为1的元素个数至少为k,把符合条件的2^i全部加到一起。 因此,我们的思路就是枚举数组的每一位,并且进行以下两个步骤: 统计所有元素第i位1的个数cnt。…

哪个职业是科学育婴的好帮手?3月7日蚂蚁新村今日答案:育婴师

蚂蚁新村是一个虚拟社区。在这个虚拟社区中,用户可以参与各种活动,比如生产能量豆、做慈善捐赠等。同时,蚂蚁新村也提供了一些知识问答环节,用户在参与的过程中可以增进知识。这些问答内容往往涉及广泛的主题,如文化、…

Docker本地部署Redis容器结合内网穿透实现无公网ip远程连接

文章目录 前言1. 安装Docker步骤2. 使用docker拉取redis镜像3. 启动redis容器4. 本地连接测试4.1 安装redis图形化界面工具4.2 使用RDM连接测试 5. 公网远程访问本地redis5.1 内网穿透工具安装5.2 创建远程连接公网地址5.3 使用固定TCP地址远程访问 前言 本文主要介绍如何在Ub…

Vue项目实战--空间论坛(1)

环境准备 安装好node.js,Vue后 添加插件 router---路由,多页面的应用 vuex---在多个组件之间维护同一个数据 添加依赖 bootstrap---美工 popperjs/core vue项目介绍 views-----对应vue文件,页面 router-----路由,页面,c…

【深度学习笔记】优化算法——随机梯度下降

随机梯度下降 在前面的章节中,我们一直在训练过程中使用随机梯度下降,但没有解释它为什么起作用。为了澄清这一点,我们刚在 :numref:sec_gd中描述了梯度下降的基本原则。本节继续更详细地说明随机梯度下降(stochastic gradient d…

耐腐蚀特氟龙塑料材质PFA烧杯超纯试剂反应杯

PFA烧杯在实验过程中可作为储酸容器或涉及强酸强碱类实验的反应容器,用于盛放样品、试剂,也可搭配电热板加热、蒸煮、赶酸用。 外壁均有凸起刻度,直筒设计,带翻边,便于夹持和移动,边沿有嘴,便于…