【STL】list用法试做_底层实现

目录

一,list  使用

1. list 文档介绍 

2. 常见接口

1.   list中的sort

2. list  + sort 与 vector  + sort效率对比

3. 关于迭代器失效

4. clear

二,list 实现

1.框架搭建 

2. 迭代器类——核心框架

3. operator->  实现 

4. const——迭代器

5. insert

6. erase

7. clear——实现

8. 拷贝构造 

首先实现迭代器构造函数:

 拷贝构造复用:

9. operator=

10. 全代码 

结语


 

一,list  使用

1. list 文档介绍 

1. list 是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。
2. list 的底层是 双向链表 结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。
3. list forward_list 非常相似:最主要的不同在于 forward_list 单链表 ,只能朝前迭代,已让其更简单高效。
4. 与其他的序列式容器相比 (array vector deque) list 通常在任意位置进行插入、移除元素的执行效率更好。
5. 与其他序列式容器相比, list forward_list 最大的缺陷 不支持任意位置的随机访问 ,比如:要访问 list 的第6 个元素,必须从已知的位置。
( 比如头部或者尾部 ) 迭代到该位置,在这段位置上迭代需要线性的时间开销list还需要一些额外的空间,以保存每个节点的相关联信息 ( 对于存储类型较小元素的大 list 来说这可能是一个重要的因素)

STL文档网址:list - C++ Reference (cplusplus.com) 

 

2. 常见接口

      

STL 以设计模板类似,只对特殊处进行讲解。 

 

1.   list中的sort

 

 我们知道算法库里面有sort函数,那为什么list要单独写一个sort ??   原因: 算法库里面的sort使用有前提——数据地址连续。(list的sort底层实现大多是 非递归归并 排序 )

2. list  + sort 与 vector  + sort效率对比

    直接说结论list的sort 接口意义不大

效率实验:

测试组: 用list接受数据并用list的sort进行排序。

对照组:  先用vector接收数据,并用算法库中的sort排序,最后将数据转移到list中。

时间效率结果:

小量两者相差不大,但数据量大时,会有5到10倍的差距。 

3. 关于迭代器失效

前面说过,此处大家可将迭代器暂时理解成类似于指针, 迭代器失效即迭代器所指向的节点的无效,即该节点被删除了。因为 list的底层结构为带头结点的双向循环链表,因此 在list中进行插入时是不会导致list的迭代器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响
void TestListIterator1()
{
   int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
   list<int> l(array, array+sizeof(array)/sizeof(array[0]));
   auto it = l.begin();
   while (it != l.end())
   {
   // erase()函数执行后,it所指向的节点已被删除,因此it无效,在下一次使用it时,必须先给
    其赋值
   l.erase(it); 
   ++it;
   }
}
// 改正
void TestListIterator()
{
  int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
  list<int> l(array, array+sizeof(array)/sizeof(array[0]));
  auto it = l.begin();
  while (it != l.end())
  {
  l.erase(it++); // it = l.erase(it);
  }
}

 

4. clear

    清除链表数据,保留头结点

 


二,list 实现

1.框架搭建 

  1 
  2 #include <iostream>
  3 #include <list>
  4 uising namespace std;
  5 namespace my_list
  6 {
  7   template<class T>
  8   struct list_node
  9   {
 10     list_node ( const T& val = T() ) // 针对不同的数据类型,所以用数据类型的仿函数
 11      :_val(val)
 12      ,_prev(nullptr)
 13      ,_next(nullptr)
 14     {}
 15 
 16     T _val;
 17     list_node<T>* _prev ;
 18     list_node<T>* _next ;
 19   };

      template<class T>
 22   class list                                                                                                        
 23   {
 24     typedef list_node<T> Node;
 25   public:
 26     list() // 
 27     {
 28       _head = new Node;
 29       _head->_prev = _head;
 30       _head->_next = _head;
 31     }
   private:
 45     Node* _head;
 46   };
 47 }

2. 迭代器类——核心框架

     之前string, vector在物理内存中是连续的,因此迭代器就跟指针差不多了,解引用一次即可表示数据。list在物理内存上不是连续存储的。list底层是带头的双向链表,通过头结点的指针,对所指向的数据进行操作处理。

struct _list_iterator  // 由于List的迭代器,表层是通过头结点进行操作,数据在头里面,一层解引用
 25     {                      // 解决不了问题
 26       typedef list_node<T> Node;
 27       typedef _list_iterator iterator;
 28       Node* _node; // 迭代器类,内部只要一个结点的指针即可
 29 
 30       _list_iterator(Node* x)
 31         : _node(x)
 32       {}
 33 
 34       // 重载迭代器*,因为结点的解引用,只是得到结点。目的:支持读,写
 35       T& operator*()
 36       {                                                                                                             
 37         return _node->_val;  
 38       }  
 39       // 重载迭代器++,list不是连续的空间,地址++不合理;目的:++后为下一个迭代器位置,且支持读,写
 40       iterator&  operator++() // 前置++  
 41       {  
 42          _node = _node->_next;
 43          return *this;
 44       }
 45       
 46 
 47       bool operator!=(const iterator& v) const 
 48       {
 49          return _node != v._node;
 50       }

大家是否有注意到吗? 我们的迭代器框架里没有写析构与拷贝构造?其实里面暗藏玄鸡。

      首先是析构: 1.  _node指针属于链表,我们不能随便释放空间。2.  自定义类型,系统自动调用自定义类型的析构函数。

      其次是拷贝: 我们只需要目标的地址,值拷贝就行,不需要深拷贝,所以不用写。 

3. operator->  实现 

    假设T是自定义类型,需要读取里面成员函数,甚至是成员变量。那么一般的写法: (*it).a1, 既然是指针写箭头会更方便 

//  实现
        T& operator*()
		{
			return _node->_data;
		}

		T* operator->()
		{
			return &(operator*()); //这个挺怪异的,马上讲解
		}

// 测试
void test2()
{
	struct pos
	{
		int a1 = 1;
		int a2 = 2;
	};
	my_list::list<pos> x;
	my_list::list<pos>::iterator it = x.begin();
	while (it != x.end())
	{
		cout << (*it).a1;
		cout << it->a1;
	}
}

 

4. const——迭代器

         普通迭代器, 解引用得到数据本体;而const迭代器,解引用得到本体,不能对本体进行修改。下面是实现思路:

迭代器代码:

#include <iostream>
#include <string>
using namespace std;

namespace my_list
{
	template <class T>
	struct list_node // 不用修改
	{
		list_node(const T& data = T())
			: _data(data)
			, _next(nullptr)
			, _prv(nullptr)
		{}

		T _data;
		list_node* _next;
		list_node* _prv;
	};

	template <class T, class Ref, class Ptr>
	struct list_iterator  // 迭代器,仅修改会返回能写的函数,*, ->
	{
		typedef list_node<T> Node;
		typedef list_iterator< T, Ref, Ptr> iterator;

		Node* _node;

		list_iterator(Node* node)
			: _node(node)
		{}

		bool operator!= (const iterator& it)
		{
			return _node != it._node;
		}

		bool operator==(const iterator& it)
		{
			return _node == it._node;
		}

		iterator& operator++()
		{
			_node = _node->_next;
			return *this;
		}

		iterator operator++(int)
		{
			iterator tmp(*this);
			_node = _node->_next;
			return *tmp;
		}

		Ref operator*()
		{
			return _node->_data;
		}

		Ptr operator->()
		{
			return &(operator*());
		}

	};


	template <class T>  // 提供const迭代器类型+ const迭代器的begin(),end()
	class list
	{
		typedef list_node<T> Node;
	public:
		typedef list_iterator<T, T&, T*>  iterator;
		typedef list_iterator<T, const T&, const T*> const_iterator;

		iterator begin()
		{
			return iterator(_head->_next);
		}

		iterator end()
		{
			return iterator(_head);
		}
		
		const_iterator begin() const
		{
			return const_iterator(_head->_next);
		}

		const_iterator end() const
		{
			return const_iterator(_head);
		}


		list()
		{
			_head = new Node;
			_head->_next = _head;
			_head->_prv = _head;
		}

		void push_back( const T& val)
		{
			Node* tmp = new Node(val);
			tmp->_data = val;
			tmp->_next = _head;
			tmp->_prv = _head->_prv;
			_head->_prv->_next = tmp;
			_head->_prv = tmp;
		}

	private:
		Node* _head;
	};
}

 

5. insert

    

 我们实现最简单的1:

        // 在当前位置插入一个数据,当前数据向后移
		iterator insert(iterator pos, const T& data)
		{
			Node* cur = pos._node;
			Node* prv = cur->_prv;
			Node* newnode = new Node(data);

			newnode->_next = cur;
			newnode->_prv = prv;
			prv->_next = newnode;
			cur->_prv = newnode;

			return iterator(newnode);
		}

 这样头插,push_back也能复用insert:

        void push_back( const T& val)
		{
			/*Node* tmp = new Node(val);
			tmp->_data = val;
			tmp->_next = _head;
			tmp->_prv = _head->_prv;
			_head->_prv->_next = tmp;
			_head->_prv = tmp;*/

			insert(iterator(_head), val);  // 头插同理
		}
        void push_front(const T& val)
		{
			insert(iterator(_head->_next), val);
		}

 

6. erase

 

删除迭代器pos位置,然后返回下一个迭代器。

        iterator erase(iterator pos)
		{
			Node* cur = pos._node;
			Node* prv = cur->_prv;
			Node* next = cur->_next;

			prv->_next = next;
			next->_prv = prv;
			delete cur;
			return iterator(next);
		}

  这里只完成迭代器的核心代码,其他小功能就只做代码分享。

 

7. clear——实现

    完成clear的同时,list析构函数也能复用。

        ~list()
		{
			clear();
			delete _head;
			_head = nullptr;
		}

		void clear()
		{
			iterator it = begin();
			while (it != end())
			{
				it = erase(it);
			}
		}

8. 拷贝构造 

传统写法: 自己对数据一个个拷贝。

现代写法: 利用迭代器构造函数,然后交换一下_head结点即可。 

首先实现迭代器构造函数:

        template <class input_iterator>
		list( input_iterator begin,  input_iterator end)
		{
			list_initial(); // 对头结点进行初始化
			while (begin != end)
			{
				push_back(*begin);
				++begin;
			}
		}

 拷贝构造复用:

       void swap(list<T>& x)  // 顺便实现一个swap
		{
			std::swap(x._head, _head);
		}

		list(const list<T>& x)
		{
			list_initial();
			list tmp(x.begin(), x.end());
			swap(tmp);
		}
         // tmp 调用析构时,会将this的_headfree掉

9. operator=

        list<T>& operator=(list<T> tmp) // 拷贝构造
		{
			swap(tmp);
			return *this;
		}

10. 全代码 

 

#include <iostream>
#include <string>
using namespace std;

namespace my_list
{
	template <class T>
	struct list_node
	{
		list_node(const T& data = T())
			: _data(data)
			, _next(nullptr)
			, _prv(nullptr)
		{}

		T _data;
		list_node* _next;
		list_node* _prv;
	};

	template <class T, class Ref, class Ptr>
	struct list_iterator
	{
		typedef list_node<T> Node;
		typedef list_iterator< T, Ref, Ptr> iterator;

		Node* _node;

		list_iterator(Node* node)
			: _node(node)
		{}

		bool operator!= (const iterator& it)
		{
			return _node != it._node;
		}

		bool operator==(const iterator& it)
		{
			return _node == it._node;
		}

		iterator& operator++()
		{
			_node = _node->_next;
			return *this;
		}

		iterator operator++(int)
		{
			iterator tmp(*this);
			_node = _node->_next;
			return *tmp;
		}

		Ref operator*()
		{
			return _node->_data;
		}

		Ptr operator->()
		{
			return &(operator*());
		}

	};


	template <class T>
	class list
	{
		typedef list_node<T> Node;
	public:
		typedef list_iterator<T, T&, T*>  iterator;
		typedef list_iterator<T, const T&, const T*> const_iterator;

		void list_initial()
		{
			_head = new Node;
			_head->_next = _head;
			_head->_prv = _head;
		}

		list()
		{
			list_initial();
		}

		template <class input_iterator>
		list( input_iterator begin,  input_iterator end)
		{
			list_initial(); // 对头结点进行初始化
			while (begin != end)
			{
				push_back(*begin);
				++begin;
			}
		}

		void swap(list<T>& x)
		{
			std::swap(x._head, _head);
		}

		list(const list<T>& x)
		{
			list_initial();
			list tmp(x.begin(), x.end());
			swap(tmp);
		}

		~list()
		{
			clear();
			delete _head;
			_head = nullptr;
		}

		void clear()
		{
			iterator it = begin();
			while (it != end())
			{
				it = erase(it);
			}
		}



		iterator begin()
		{
			return iterator(_head->_next);
		}

		iterator end()
		{
			return iterator(_head);
		}
		
		const_iterator begin() const
		{
			return const_iterator(_head->_next);
		}

		const_iterator end() const
		{
			return const_iterator(_head);
		}


		void push_back( const T& val)
		{
			/*Node* tmp = new Node(val);
			tmp->_data = val;
			tmp->_next = _head;
			tmp->_prv = _head->_prv;
			_head->_prv->_next = tmp;
			_head->_prv = tmp;*/

			insert(iterator(_head), val);  // 头插同理
		}

		void push_front(const T& val)
		{
			insert(iterator(_head->_next), val);
		}

		// 在当前位置插入一个数据,当前数据向后移
		iterator insert(iterator pos, const T& data)
		{
			Node* cur = pos._node;
			Node* prv = cur->_prv;
			Node* newnode = new Node(data);

			newnode->_next = cur;
			newnode->_prv = prv;
			prv->_next = newnode;
			cur->_prv = newnode;

			return iterator(newnode);
		}

		iterator erase(iterator pos)
		{
			Node* cur = pos._node;
			Node* prv = cur->_prv;
			Node* next = cur->_next;

			prv->_next = next;
			next->_prv = prv;
			delete cur;
			return iterator(next);
		}
		
		iterator Pop_back()
		{
			erase(iterator(_head->_prv));
			return _head;
		}

		iterator Pop_front()
		{
			Node* next = _head->_next->_next;
			erase(iterator(_head->_next));
			return next;
		}

	     list<T>& operator=(list<T> tmp)
		{
			swap(tmp);
			return *this;
		}
	private:
		Node* _head;
	};
}

 

结语

   本小节就到这里了,感谢小伙伴的浏览,如果有什么建议,欢迎在评论区评论,如果给小伙伴带来一些收获请留下你的小赞,你的点赞和关注将会成为博主创作的动力

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/43426.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【计算机网络 01】说在前面 信息服务 因特网 ISP RFC技术文档 边缘与核心 交换方式 定义与分类 网络性能指标 计算机网络体系结构 章节小结

第一章--概述 说在前面1.1 计算机网络 信息时代作用1.2 因特网概述1.3 三种交换方式1.4 计算机网络 定义与分类1.5 计算机网络的性能指标1.6 计算机网络体系结构1 常见的计算机网络体系结构2 计算机网络体系结构分层的必要性3 计算机网络体系结构分层思想举例4 计算机网络体系结…

RuntimeError: DataLoader worker (pid 2105929) is killed by signal: Killed.

PyTorch DataLoader num_workers Test - 加快速度 可以利用PyTorch DataLoader类的多进程功能来加快神经网络训练过程。 加快训练进程 为了加快训练过程&#xff0c;我们将利用DataLoader类的num_workers可选属性。 num_workers属性告诉DataLoader实例要使用多少个子进程进…

23.多项式与非多项式曲线拟合对比(matlab程序)

1.简述 拟合标准&#xff1a; (1)原始数据向量与拟合向量之间的距离最小&#xff0c;该距离的度量一般使用误差平方和表示&#xff0c;即均方误差&#xff1a;R||Q-Y||22 (2)当均方误差最小时&#xff0c;说明构造的拟合向量与原始向量最为接近&#xff0c;这种曲线拟合的方法…

git commit -m时候没有保存package.json等文件

项目场景&#xff1a; 提示&#xff1a;git add . 和 git commit -m "保存" 操作&#xff0c;没有保存package.json等文件。 解决方案&#xff1a; 1.确保 package.json 文件没有被列在 .gitignore 文件中。打开 .gitignore 文件&#xff0c;检查是否有类似于 packa…

论文工具——ChatGPT结合PlotNeuralNet快速出神经网络深度学习模型图

文章目录 引言正文PlotNeuralNet安装使用使用python进行编辑使用latex进行编辑 样例利用chatGPT使用chatGPT生成Latex代码利用chatGPT生成对应的python代码 总结引用 引言 介绍如何安装PlotNeuralNet工具&#xff0c;并结合chatGPT减少学习成本&#xff0c;快速出图。将按照软…

4.2 Bootstrap HTML编码规范

文章目录 Bootstrap HTML编码规范语法HTML5 doctype语言属性IE 兼容模式字符编码引入 CSS 和 JavaScript 文件HTML5 spec links 实用为王属性顺序布尔&#xff08;boolean&#xff09;型属性减少标签的数量JavaScript 生成的标签 Bootstrap HTML编码规范 语法 用两个空格来代替…

通过 EXPLAIN 分析 SQL 的执行计划

通过 EXPLAIN 分析 SQL 的执行计划 EXPLAIN SELECTleave_station_area_id,ROUND( ( SUM( station_dist ) / 1000 ) / ( SUM( station_travel_time ) / 60 ), 2 ) evnPeakAvgSpeedFROMV3_SHIFT_ANALYSISWHERESTAT_DATE DATE_SUB( CURRENT_DATE, INTERVAL 1 DAY )AND LEAVE_STA…

NetSuite财务报表General Ledger Report的缺陷及改造案例

本周有用户提到一个特殊的业务场景&#xff0c;比较有代表性&#xff0c;在此分享。 问题 “如果在一张JE中&#xff0c;某个科目既有借又有贷&#xff0c;金额相同。那么在General Ledger Report中此JE的借贷都显示为0。这与事实不符&#xff0c;所以是不对的。” JE 155&a…

vue3-element-plus,控制表格多选的数量

1. 需求描述 控制表格的多选&#xff0c;最多只能选择5条数据&#xff0c;并且其他项禁用 2. 需求描述 <!-- selection-change 当选择项发生变化时会触发该事件--><template><el-tableref"multipleTableRef"v-loading"loading":data"…

[Linux] CentOS7 中 pip3 install 可能出现的 ssl 问题

由于解决问题之后, 才写的博客, 所以没有图片记录. 尽量描述清楚一些 今天写代码的时候, 突然发现 文件里用了#define定义宏之后, coc.nvim的coc-clangd补全就用不了 :checkhealth了一下, 发现nvim忘记支持python3了 尝试pip3 install neovim的时候, 发现会警告然后安装失败.…

网络安全(黑客)自学路线笔记

一、什么是黑客&#xff1f; 黑客泛指IT技术主攻渗透窃取攻击技术的电脑高手&#xff0c;现阶段黑客所需要掌握的远远不止这些。 二、为什么要学习黑客技术&#xff1f; 其实&#xff0c;网络信息空间安全已经成为海陆空之外的第四大战场&#xff0c;除了国与国之间的博弈&am…

4.数据类型

JS数据类型整体分为两大类: ➢基本数据类型 ➢引用数据类型 4.1数据类型-数字类型(Number) 即我们数学中学习到的数字&#xff0c;可以是整数、小数、正数、负数。 let age 18 //整数 let price 88.99 //小数JavaScript中的正数、负数、小数等统一称为数字类型 注意…

【测试开发】Python+Django实现接口测试工具

PythonDjango接口自动化 引言&#xff1a; 最近被几个公司实习生整自闭了&#xff0c;没有基础&#xff0c;想学自动化又不知道怎么去学&#xff0c;没有方向没有头绪&#xff0c;说白了其实就是学习过程中没有成就感&#xff0c;所以学不下去。出于各种花里胡哨的原因&#xf…

关于 Qt中的QString内容存在\u0000使用QChart(0x00)消除 的解决方法

若该文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/131860574 红胖子(红模仿)的博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软…

解密动态内存管理的奥秘(含内存4个函数)

目录 一.为什么存在动态内存管理 二.动态内存函数的介绍 1. malloc函数&#xff08;memory alloc 内存开辟&#xff09; 函数介绍&#xff1a; malloc函数使用举例代码&#xff1a; 2.free&#xff08;释放&#xff09; 函数介绍&#xff1a; 代码的示例&#xff1a…

【Linux】初识多线程深入理解进程地址空间

目录 1 多线程的引入 1.1 相关概念 1.2 Linux操作系统理解多线程 特殊的进程结构 创建子进程的过程 创建多线程 进程与线程之间的关系 1.3 对多线程结构的管理 Windows管理多线程 Linux管理多线程 1.4 理解多线程与多进程相比&#xff0c;调度的成本更低 2 深入理…

MacOS上安装Portainer

Portainer介绍 Portainer 是一个很方便的 Docker 可视化管理工具。主要的功能包括: 管理 Docker 主机,可以添加和删除 Docker 主机管理容器,可以启动、停止、删除等容器管理镜像,可以搜索、拉取、删除镜像管理卷,可以查看、删除卷管理网络,可以创建 Docker 网络管理用户和角色…

OpenCv之车辆统计项目

目录 一、加载视频 二、去除背景 三、通过形态学识别车辆 四、对车辆统计 一、加载视频 代码如下: import cv2 import numpy as np import matplotlib.pyplot as plt# 视频加载 cap cv2.VideoCapture(2.mp4)# 循环读取视频帧 while True:ret,frame cap.read()if ret Tr…

DOS命令(windows)

DOS命令&#xff08;windows&#xff09; 目录 1. 打开命令提示符。2. 切换至根。3. 当前路径。4. 切换至上级路径。5. 查看当前目录。6. 查看文件内容。7. 删除文件。8. 进入长文件夹名时缩写。9. 复制文件。10. 移动文件。 1. 打开命令提示符。 命令&#xff1a;winR 输入&a…

CHI协议保序之Compack保序

一致性系统中&#xff0c;使用三种保序方式&#xff1b; Completion ack response ⭕Completion acknowledgment&#xff1a; □ 该域段主要是用来&#xff0c; □ 决定 RN 发送的 trans&#xff0c;与其他 RN 发送的命令产生的 SNP 之间的顺序&#xff1b; …