YOLOv9独家改进|动态蛇形卷积Dynamic Snake Convolution与RepNCSPELAN4融合


专栏介绍:YOLOv9改进系列 | 包含深度学习最新创新,主力高效涨点!!!


一、改进点介绍

        Dynamic Snake Convolution是一种针对细长微弱的局部结构特征与复杂多变的全局形态特征设计的卷积模块。

        RepNCSPELAN4是YOLOv9中的特征提取模块,类似YOLOv5和v8中的C2f与C3模块。


二、RepNCSPELAN4Dynamic模块详解

 2.1 模块简介

       RepNCSPELAN4Dynamic的主要思想:  使用Dynamic Snake Convolution与RepNCSPELAN4中融合。


三、 RepNCSPELAN4Dynamic模块使用教程

3.1 RepNCSPELAN4Dynamic模块的代码

class RepNBottleneck_DySnakeConv(RepNBottleneck):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):  # ch_in, ch_out, shortcut, kernels, groups, expand
        super().__init__(c1, c2, shortcut, g, k, e)
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = RepConvN(c1, c_, k[0], 1)
        self.cv2 = Conv(c_, c2, k[1], s=1, g=g)
        self.add = shortcut and c1 == c2


class RepNCSP_DySnakeConv(RepNCSP):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = DySnakeConv(c1, c_)
        self.cv2 = DySnakeConv(c1, c_)
        self.cv3 = DySnakeConv(2 * c_, c2)  # optional act=FReLU(c2)
        self.m = nn.Sequential(*(RepNBottleneck_DySnakeConv(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

class RepNCSPELAN4DySnakeConv(RepNCSPELAN4):
    # csp-elan
    def __init__(self, c1, c2, c3, c4, c5=1):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__(c1, c2, c3, c4, c5)
        self.cv1 = Conv(c1, c3, k=1, s=1)
        self.cv2 = nn.Sequential(RepNCSP_DySnakeConv(c3 // 2, c4, c5), DySnakeConv(c4, c4, 3))
        self.cv3 = nn.Sequential(RepNCSP_DySnakeConv(c4, c4, c5), DySnakeConv(c4, c4, 3))
        self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1)

class DySnakeConv(nn.Module):
    def __init__(self, inc, ouc, k=3) -> None:
        super().__init__()

        self.conv_0 = Conv(inc, ouc, k)
        self.conv_x = DSConv(inc, ouc, 0, k)
        self.conv_y = DSConv(inc, ouc, 1, k)

    def forward(self, x):
        return torch.cat([self.conv_0(x), self.conv_x(x), self.conv_y(x)], dim=1)


class DSConv(nn.Module):
    def __init__(self, in_ch, out_ch, morph, kernel_size=3, if_offset=True, extend_scope=1):
        """
        The Dynamic Snake Convolution
        :param in_ch: input channel
        :param out_ch: output channel
        :param kernel_size: the size of kernel
        :param extend_scope: the range to expand (default 1 for this method)
        :param morph: the morphology of the convolution kernel is mainly divided into two types
                        along the x-axis (0) and the y-axis (1) (see the paper for details)
        :param if_offset: whether deformation is required, if it is False, it is the standard convolution kernel
        """
        super(DSConv, self).__init__()
        # use the <offset_conv> to learn the deformable offset
        self.offset_conv = nn.Conv2d(in_ch, 2 * kernel_size, 3, padding=1)
        self.bn = nn.BatchNorm2d(2 * kernel_size)
        self.kernel_size = kernel_size

        # two types of the DSConv (along x-axis and y-axis)
        self.dsc_conv_x = nn.Conv2d(
            in_ch,
            out_ch,
            kernel_size=(kernel_size, 1),
            stride=(kernel_size, 1),
            padding=0,
        )
        self.dsc_conv_y = nn.Conv2d(
            in_ch,
            out_ch,
            kernel_size=(1, kernel_size),
            stride=(1, kernel_size),
            padding=0,
        )

        self.gn = nn.GroupNorm(out_ch // 4, out_ch)
        self.act = Conv.default_act

        self.extend_scope = extend_scope
        self.morph = morph
        self.if_offset = if_offset

    def forward(self, f):
        offset = self.offset_conv(f)
        offset = self.bn(offset)
        # We need a range of deformation between -1 and 1 to mimic the snake's swing
        offset = torch.tanh(offset)
        input_shape = f.shape
        dsc = DSC(input_shape, self.kernel_size, self.extend_scope, self.morph)
        deformed_feature = dsc.deform_conv(f, offset, self.if_offset)
        if self.morph == 0:
            x = self.dsc_conv_x(deformed_feature.type(f.dtype))
            x = self.gn(x)
            x = self.act(x)
            return x
        else:
            x = self.dsc_conv_y(deformed_feature.type(f.dtype))
            x = self.gn(x)
            x = self.act(x)
            return x


# Core code, for ease of understanding, we mark the dimensions of input and output next to the code
class DSC(object):
    def __init__(self, input_shape, kernel_size, extend_scope, morph):
        self.num_points = kernel_size
        self.width = input_shape[2]
        self.height = input_shape[3]
        self.morph = morph
        self.extend_scope = extend_scope  # offset (-1 ~ 1) * extend_scope

        # define feature map shape
        """
        B: Batch size  C: Channel  W: Width  H: Height
        """
        self.num_batch = input_shape[0]
        self.num_channels = input_shape[1]

    """
    input: offset [B,2*K,W,H]  K: Kernel size (2*K: 2D image, deformation contains <x_offset> and <y_offset>)
    output_x: [B,1,W,K*H]   coordinate map
    output_y: [B,1,K*W,H]   coordinate map
    """

    def _coordinate_map_3D(self, offset, if_offset):
        device = offset.device
        # offset
        y_offset, x_offset = torch.split(offset, self.num_points, dim=1)

        y_center = torch.arange(0, self.width).repeat([self.height])
        y_center = y_center.reshape(self.height, self.width)
        y_center = y_center.permute(1, 0)
        y_center = y_center.reshape([-1, self.width, self.height])
        y_center = y_center.repeat([self.num_points, 1, 1]).float()
        y_center = y_center.unsqueeze(0)

        x_center = torch.arange(0, self.height).repeat([self.width])
        x_center = x_center.reshape(self.width, self.height)
        x_center = x_center.permute(0, 1)
        x_center = x_center.reshape([-1, self.width, self.height])
        x_center = x_center.repeat([self.num_points, 1, 1]).float()
        x_center = x_center.unsqueeze(0)

        if self.morph == 0:
            """
            Initialize the kernel and flatten the kernel
                y: only need 0
                x: -num_points//2 ~ num_points//2 (Determined by the kernel size)
                !!! The related PPT will be submitted later, and the PPT will contain the whole changes of each step
            """
            y = torch.linspace(0, 0, 1)
            x = torch.linspace(
                -int(self.num_points // 2),
                int(self.num_points // 2),
                int(self.num_points),
            )

            y, x = torch.meshgrid(y, x)
            y_spread = y.reshape(-1, 1)
            x_spread = x.reshape(-1, 1)

            y_grid = y_spread.repeat([1, self.width * self.height])
            y_grid = y_grid.reshape([self.num_points, self.width, self.height])
            y_grid = y_grid.unsqueeze(0)  # [B*K*K, W,H]

            x_grid = x_spread.repeat([1, self.width * self.height])
            x_grid = x_grid.reshape([self.num_points, self.width, self.height])
            x_grid = x_grid.unsqueeze(0)  # [B*K*K, W,H]

            y_new = y_center + y_grid
            x_new = x_center + x_grid

            y_new = y_new.repeat(self.num_batch, 1, 1, 1).to(device)
            x_new = x_new.repeat(self.num_batch, 1, 1, 1).to(device)

            y_offset_new = y_offset.detach().clone()

            if if_offset:
                y_offset = y_offset.permute(1, 0, 2, 3)
                y_offset_new = y_offset_new.permute(1, 0, 2, 3)
                center = int(self.num_points // 2)

                # The center position remains unchanged and the rest of the positions begin to swing
                # This part is quite simple. The main idea is that "offset is an iterative process"
                y_offset_new[center] = 0
                for index in range(1, center):
                    y_offset_new[center + index] = (y_offset_new[center + index - 1] + y_offset[center + index])
                    y_offset_new[center - index] = (y_offset_new[center - index + 1] + y_offset[center - index])
                y_offset_new = y_offset_new.permute(1, 0, 2, 3).to(device)
                y_new = y_new.add(y_offset_new.mul(self.extend_scope))

            y_new = y_new.reshape(
                [self.num_batch, self.num_points, 1, self.width, self.height])
            y_new = y_new.permute(0, 3, 1, 4, 2)
            y_new = y_new.reshape([
                self.num_batch, self.num_points * self.width, 1 * self.height
            ])
            x_new = x_new.reshape(
                [self.num_batch, self.num_points, 1, self.width, self.height])
            x_new = x_new.permute(0, 3, 1, 4, 2)
            x_new = x_new.reshape([
                self.num_batch, self.num_points * self.width, 1 * self.height
            ])
            return y_new, x_new

        else:
            """
            Initialize the kernel and flatten the kernel
                y: -num_points//2 ~ num_points//2 (Determined by the kernel size)
                x: only need 0
            """
            y = torch.linspace(
                -int(self.num_points // 2),
                int(self.num_points // 2),
                int(self.num_points),
            )
            x = torch.linspace(0, 0, 1)

            y, x = torch.meshgrid(y, x)
            y_spread = y.reshape(-1, 1)
            x_spread = x.reshape(-1, 1)

            y_grid = y_spread.repeat([1, self.width * self.height])
            y_grid = y_grid.reshape([self.num_points, self.width, self.height])
            y_grid = y_grid.unsqueeze(0)

            x_grid = x_spread.repeat([1, self.width * self.height])
            x_grid = x_grid.reshape([self.num_points, self.width, self.height])
            x_grid = x_grid.unsqueeze(0)

            y_new = y_center + y_grid
            x_new = x_center + x_grid

            y_new = y_new.repeat(self.num_batch, 1, 1, 1)
            x_new = x_new.repeat(self.num_batch, 1, 1, 1)

            y_new = y_new.to(device)
            x_new = x_new.to(device)
            x_offset_new = x_offset.detach().clone()

            if if_offset:
                x_offset = x_offset.permute(1, 0, 2, 3)
                x_offset_new = x_offset_new.permute(1, 0, 2, 3)
                center = int(self.num_points // 2)
                x_offset_new[center] = 0
                for index in range(1, center):
                    x_offset_new[center + index] = (x_offset_new[center + index - 1] + x_offset[center + index])
                    x_offset_new[center - index] = (x_offset_new[center - index + 1] + x_offset[center - index])
                x_offset_new = x_offset_new.permute(1, 0, 2, 3).to(device)
                x_new = x_new.add(x_offset_new.mul(self.extend_scope))

            y_new = y_new.reshape(
                [self.num_batch, 1, self.num_points, self.width, self.height])
            y_new = y_new.permute(0, 3, 1, 4, 2)
            y_new = y_new.reshape([
                self.num_batch, 1 * self.width, self.num_points * self.height
            ])
            x_new = x_new.reshape(
                [self.num_batch, 1, self.num_points, self.width, self.height])
            x_new = x_new.permute(0, 3, 1, 4, 2)
            x_new = x_new.reshape([
                self.num_batch, 1 * self.width, self.num_points * self.height
            ])
            return y_new, x_new

    """
    input: input feature map [N,C,D,W,H];coordinate map [N,K*D,K*W,K*H] 
    output: [N,1,K*D,K*W,K*H]  deformed feature map
    """

    def _bilinear_interpolate_3D(self, input_feature, y, x):
        device = input_feature.device
        y = y.reshape([-1]).float()
        x = x.reshape([-1]).float()

        zero = torch.zeros([]).int()
        max_y = self.width - 1
        max_x = self.height - 1

        # find 8 grid locations
        y0 = torch.floor(y).int()
        y1 = y0 + 1
        x0 = torch.floor(x).int()
        x1 = x0 + 1

        # clip out coordinates exceeding feature map volume
        y0 = torch.clamp(y0, zero, max_y)
        y1 = torch.clamp(y1, zero, max_y)
        x0 = torch.clamp(x0, zero, max_x)
        x1 = torch.clamp(x1, zero, max_x)

        input_feature_flat = input_feature.flatten()
        input_feature_flat = input_feature_flat.reshape(
            self.num_batch, self.num_channels, self.width, self.height)
        input_feature_flat = input_feature_flat.permute(0, 2, 3, 1)
        input_feature_flat = input_feature_flat.reshape(-1, self.num_channels)
        dimension = self.height * self.width

        base = torch.arange(self.num_batch) * dimension
        base = base.reshape([-1, 1]).float()

        repeat = torch.ones([self.num_points * self.width * self.height
                             ]).unsqueeze(0)
        repeat = repeat.float()

        base = torch.matmul(base, repeat)
        base = base.reshape([-1])

        base = base.to(device)

        base_y0 = base + y0 * self.height
        base_y1 = base + y1 * self.height

        # top rectangle of the neighbourhood volume
        index_a0 = base_y0 - base + x0
        index_c0 = base_y0 - base + x1

        # bottom rectangle of the neighbourhood volume
        index_a1 = base_y1 - base + x0
        index_c1 = base_y1 - base + x1

        # get 8 grid values
        value_a0 = input_feature_flat[index_a0.type(torch.int64)].to(device)
        value_c0 = input_feature_flat[index_c0.type(torch.int64)].to(device)
        value_a1 = input_feature_flat[index_a1.type(torch.int64)].to(device)
        value_c1 = input_feature_flat[index_c1.type(torch.int64)].to(device)

        # find 8 grid locations
        y0 = torch.floor(y).int()
        y1 = y0 + 1
        x0 = torch.floor(x).int()
        x1 = x0 + 1

        # clip out coordinates exceeding feature map volume
        y0 = torch.clamp(y0, zero, max_y + 1)
        y1 = torch.clamp(y1, zero, max_y + 1)
        x0 = torch.clamp(x0, zero, max_x + 1)
        x1 = torch.clamp(x1, zero, max_x + 1)

        x0_float = x0.float()
        x1_float = x1.float()
        y0_float = y0.float()
        y1_float = y1.float()

        vol_a0 = ((y1_float - y) * (x1_float - x)).unsqueeze(-1).to(device)
        vol_c0 = ((y1_float - y) * (x - x0_float)).unsqueeze(-1).to(device)
        vol_a1 = ((y - y0_float) * (x1_float - x)).unsqueeze(-1).to(device)
        vol_c1 = ((y - y0_float) * (x - x0_float)).unsqueeze(-1).to(device)

        outputs = (value_a0 * vol_a0 + value_c0 * vol_c0 + value_a1 * vol_a1 +
                   value_c1 * vol_c1)

        if self.morph == 0:
            outputs = outputs.reshape([
                self.num_batch,
                self.num_points * self.width,
                1 * self.height,
                self.num_channels,
            ])
            outputs = outputs.permute(0, 3, 1, 2)
        else:
            outputs = outputs.reshape([
                self.num_batch,
                1 * self.width,
                self.num_points * self.height,
                self.num_channels,
            ])
            outputs = outputs.permute(0, 3, 1, 2)
        return outputs

    def deform_conv(self, input, offset, if_offset):
        y, x = self._coordinate_map_3D(offset, if_offset)
        deformed_feature = self._bilinear_interpolate_3D(input, y, x)
        return deformed_feature

3.2 在YOlO v9中的添加教程

阅读YOLOv9添加模块教程或使用下文操作

        1. 将YOLOv9工程中models下common.py文件中的最下行(否则可能因类继承报错)增加模块的代码。

         2. 将YOLOv9工程中models下yolo.py文件中的第681行(可能因版本变化而变化)增加以下代码。

            RepNCSPELAN4, SPPELAN, RepNCSPELAN4DySnakeConv}:

3.3 运行配置文件

# YOLOv9
# Powered bu https://blog.csdn.net/StopAndGoyyy

# parameters
nc: 80  # number of classes
#depth_multiple: 0.33  # model depth multiple
depth_multiple: 1  # model depth multiple
#width_multiple: 0.25  # layer channel multiple
width_multiple: 1  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()

# anchors
anchors: 3

# YOLOv9 backbone
backbone:
  [
   [-1, 1, Silence, []],  
   
   # conv down
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2

   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 2-P2/4

   # elan-1 block
   [-1, 1, RepNCSPELAN4DySnakeConv, [256, 128, 64, 1]],  # 3

   # avg-conv down
   [-1, 1, ADown, [256]],  # 4-P3/8

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5

   # avg-conv down
   [-1, 1, ADown, [512]],  # 6-P4/16

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7

   # avg-conv down
   [-1, 1, ADown, [512]],  # 8-P5/32

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9
  ]

# YOLOv9 head
head:
  [
   # elan-spp block
   [-1, 1, SPPELAN, [512, 256]],  # 10

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 7], 1, Concat, [1]],  # cat backbone P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 5], 1, Concat, [1]],  # cat backbone P3

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)

   # avg-conv-down merge
   [-1, 1, ADown, [256]],
   [[-1, 13], 1, Concat, [1]],  # cat head P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 19 (P4/16-medium)

   # avg-conv-down merge
   [-1, 1, ADown, [512]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 22 (P5/32-large)
   
   
   # multi-level reversible auxiliary branch
   
   # routing
   [5, 1, CBLinear, [[256]]], # 23
   [7, 1, CBLinear, [[256, 512]]], # 24
   [9, 1, CBLinear, [[256, 512, 512]]], # 25
   
   # conv down
   [0, 1, Conv, [64, 3, 2]],  # 26-P1/2

   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 27-P2/4

   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 28

   # avg-conv down fuse
   [-1, 1, ADown, [256]],  # 29-P3/8
   [[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30  

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 31

   # avg-conv down fuse
   [-1, 1, ADown, [512]],  # 32-P4/16
   [[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33 

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 34

   # avg-conv down fuse
   [-1, 1, ADown, [512]],  # 35-P5/32
   [[25, -1], 1, CBFuse, [[2]]], # 36

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 37
   
   
   
   # detection head

   # detect
   [[31, 34, 37, 16, 19, 22], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)
  ]

3.4 训练过程


欢迎关注!


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/432119.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

智慧城市的新引擎:物联网技术引领城市创新与发展

目录 一、引言 二、物联网技术与智慧城市的融合 三、物联网技术在智慧城市中的应用 1、智慧交通管理 2、智慧能源管理 3、智慧环保管理 4、智慧公共服务 四、物联网技术引领城市创新与发展的价值 五、挑战与前景 六、结论 一、引言 随着科技的日新月异&#xff0c;物…

图像处理 mask掩膜

1&#xff0c;图像算术运算 图像的算术运算有很多种&#xff0c;比如两幅图像可以相加&#xff0c;相减&#xff0c;相乘&#xff0c;相除&#xff0c;位运算&#xff0c;平方根&#xff0c;对数&#xff0c;绝对值等&#xff1b;图像也可以放大&#xff0c;缩小&#xff0c;旋…

uni-app头像编辑上传

实现比较简单&#xff0c;文档中都有描述&#xff0c;就是第一次做可能会有疏漏&#xff0c;记录一下&#xff1a; <view class"edict-item" click"selectPic"><text class"item-name" :style"$em.$getThemeStyle([avatarConText…

GIT使用学习笔记 远程仓库篇

git clone xxxxx 将远程 你可能注意到的第一个事就是在我们的本地仓库多了一个名为 o/main 的分支, 这种类型的分支就叫远程分支。由于远程分支的特性导致其拥有一些特殊属性。 远程分支反映了远程仓库(在你上次和它通信时)的状态。这会有助于你理解本地的工作与公共工作的差…

ssm核心面试题汇总

文章目录 1. Spring1.1 Spring Beans1.谈谈你对Spring的理解以及优缺点2. 什么是Spring beans3. 配置注册Bean有哪几种方式4. Spring支持的几种bean的作用域5. 单例bean的优势6. 单例bean是线程安全的吗&#xff1f;如何优化为线程安全7. 谈一谈spring bean的自动装配8. Spring…

如何在jupyter notebook 中下载第三方库

在anconda 中找到&#xff1a; Anaconda Prompt 进入页面后的样式&#xff1a; 在黑色框中输入&#xff1a; 下载第三方库的命令 第三方库&#xff1a; 三种输入方式 标准保证正确 pip instsall 包名 -i 镜像源地址 pip install pip 是 Python 包管理工具&#xff0c;…

在排序数组中查找元素的第一个和最后一个位置[中等]

优质博文IT-BLOG-CN 一、题目 给你一个按照非递减顺序排列的整数数组nums&#xff0c;和一个目标值target。请你找出给定目标值在数组中的开始位置和结束位置。 如果数组中不存在目标值target&#xff0c;返回[-1, -1]。 你必须设计并实现时间复杂度为O(log n)的算法解决此问…

Cookie 探秘:了解 Web 浏览器中的小甜饼

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

华为智慧教室3.0的晨光,点亮教育智能化变革

“教室外有更大的世界&#xff0c;但世界上没有比教室更伟大的地方。” 我们在求学阶段&#xff0c;都听说过这句话&#xff0c;但往往是在走出校园之后&#xff0c;才真正理解了这句话。为了让走出校园的孩子能够有能力&#xff0c;有勇气探索广阔的世界。我们应该准备最好的教…

【Leetcode】1588.所有奇数长度子数组的和

题目描述 思路 题目要求我们求解所有奇数长度数组的和。若暴力循环求解&#xff0c;时间复杂度过高。所以&#xff0c;我们可以采用前缀和优化。 如上图输入arr数组&#xff0c;sum[i]用于计算arr数组中前i个数的和。(在程序中&#xff0c;先给sum[0]赋值&#xff0c;等于arr[0…

平台总线式驱动开发

一、总线、设备、驱动 硬编码式的驱动开发带来的问题&#xff1a; 垃圾代码太多 结构不清晰 一些统一设备功能难以支持 开发效率低下 1.1 初期解决思路&#xff1a;设备和驱动分离 struct device来表示一个具体设备&#xff0c;主要提供具体设备相关的资源&#xff08;如…

Java项目:37 springboot003图书个性化推荐系统的设计与实现

作者主页&#xff1a;源码空间codegym 简介&#xff1a;Java领域优质创作者、Java项目、学习资料、技术互助 文中获取源码 项目介绍 springboot003图书个性化推荐系统的设计与实现 管理员&#xff1a;首页、个人中心、学生管理、图书分类管理、图书信息管理、图书预约管理、退…

阿里二面,redis宕机了,如何快速恢复数据

背景 有个同学阿里二面&#xff0c;面试官问&#xff1a;redis宕机了&#xff0c;如何恢复数据&#xff1f; 这位同学当时一脸懵&#xff0c;不知道如何回答。 分析分析这个问题&#xff0c;redis宕机&#xff0c;要想恢复数据&#xff0c;首先redis的数据有没有做持久化&…

基于Java springboot+VUE+redis实现的前后端分类版网上商城项目

基于Java springbootVUEredis实现的前后端分类版网上商城项目 博主介绍&#xff1a;多年java开发经验&#xff0c;专注Java开发、定制、远程、文档编写指导等,csdn特邀作者、专注于Java技术领域 作者主页 央顺技术团队 Java毕设项目精品实战案例《1000套》 欢迎点赞 收藏 ⭐留言…

《操作系统真相还原》读书笔记五:mbr初体验

1.编写mbr汇编程序 SECTION MBR vstart0x7c00mov ax,csmov ds,axmov es,axmov ss,axmov fs,axmov sp,0x7c00; 清屏mov ax,0x600mov bx,0x700mov cx,0mov dx, 0x184fint 0x10; 设置光标结束mov ah,3mov bh,0int 0x10mov ax,messagemov bp,axmov cx,5mov ax,0x1301mov bx,0x2 ;…

2.14ALU,存储系统

IR存放当下欲执行的指令&#xff1b;PC存放下一条指令的地址&#xff1b; MAR存放欲访问的存储单元地址&#xff1b;MDR存放从存储单元取来的数据&#xff01; 地址译码器是主存的构成部分&#xff0c;不属于CPU&#xff1b;地址寄存器虽然一般属于主存&#xff0c;但是现代计…

联通移动电信卡推广分销开源版

联通移动电信卡推广分销开源版 一套完善&#xff0c;多功能&#xff0c;的号卡分销系统&#xff0c;多接口&#xff0c;包括运营商接口&#xff0c;无限三级代理&#xff0c; 目前市面上最优雅的号卡系统 自动安装向导 易于安装使用部署 多个第三方接口资源汇聚 &#xff0c;全…

华为昇腾系列——入门学习

概述 昇腾&#xff08;Ascend&#xff09;是华为推出的人工智能处理器品牌&#xff0c;其系列产品包括昇腾910和昇腾310芯片等。 生态情况 众所周知&#xff0c;华为昇腾存在的意义就是替代英伟达的GPU。从事AI开发的小伙伴&#xff0c;应该明白这个替代&#xff0c;不仅仅是…

【Tauri】(4):使用Tauri1.5版本+candle框架运行大模型,前后的搭建运行成功,整合前端项目

1&#xff0c;视频地址 关于tauri 框架 2&#xff0c;搭建rust 环境 # 设置服务器国内代理&#xff1a; export RUSTUP_DIST_SERVER"https://rsproxy.cn" export RUSTUP_UPDATE_ROOT"https://rsproxy.cn/rustup"# 设置环境变量 export RUSTUP_HOME/data/…

Hadoop 3.1.1 分布式搭建过程

准备工作 通过克隆获得三台虚拟机 准备工作&#xff1a;时间同步、时区调整、JDK1.8环境、配置主机名、关闭防火墙、配置静态IP 无特别说明&#xff0c;三台虚拟机都要完成准备工作 1、时间同步 ntpdate ntp.aliyun.com2、调整时区 timedatectl set-timezone Asia/Shanghai3、…