基础内容
1、MySQL的架构分层
(1)Serve层:负责建立连接、分析和执行 SQL。
MySQL 大多数的核心功能模块都在这实现,主要包括连接器,查询缓存、解析器、预处理器、优化器、执行器等。另外,所有的内置函数(如日期、时间、数学和加密函数等)和所有跨存储引擎的功能(如存储过程、触发器、视图等。)都在 Server 层实现。
(2)存储引擎层:负责数据的存储和提取。
支持 InnoDB、MyISAM、Memory 等多个存储引擎,不同的存储引擎共用一个 Server 层。现在最常用的存储引擎是 InnoDB,从 MySQL 5.5 版本开始, InnoDB 成为了 MySQL 的默认存储引擎。我们常说的索引数据结构,就是由存储引擎层实现的,不同的存储引擎支持的索引类型也不相同,比如 InnoDB 支持索引类型是 B+树 ,且是默认使用,也就是说在数据表中创建的主键索引和二级索引默认使用的是 B+ 树索引。
2、一条 SQL 查询语句的执行流程
(1)连接器:第一步肯定是要先连接 MySQL 服务,然后才能执行 SQL 语句
连接MySQL服务命令:mysql -h
i
p
−
u
ip -u
ip−uuser -p
如果用户密码都没有问题,连接器就会获取该用户的权限,然后保存起来,后续该用户在此连接里的任何操作,都会基于连接开始时读到的权限进行权限逻辑的判断。
所以,如果一个用户已经建立了连接,即使管理员中途修改了该用户的权限,也不会影响已经存在连接的权限。修改完成后,只有再新建的连接才会使用新的权限设置。
(2)查询缓存:如果 SQL 是查询语句(select 语句),MySQL 就会先去查询缓存( Query Cache )里查找缓存数据,看看之前有没有执行过这一条命令,这个查询缓存是以 key-value 形式保存在内存中的,key 为 SQL 查询语句,value 为 SQL 语句查询的结果。
对于更新比较频繁的表,查询缓存的命中率很低的,因为只要一个表有更新操作,那么这个表的查询缓存就会被清空。如果刚缓存了一个查询结果很大的数据,还没被使用的时候,刚好这个表有更新操作,查询缓冲就被清空了,相当于缓存了个寂寞。
(3)解析 SQL:
(a)词法分析。MySQL 会根据你输入的字符串识别出关键字出来,构建出 SQL 语法树,这样方便后面模块获取 SQL 类型、表名、字段名、 where 条件等等。
(b)语法分析。根据词法分析的结果,语法解析器会根据语法规则,判断你输入的这个 SQL 语句是否满足 MySQL 语法。
(4)执行 SQL
(a)预处理阶段:MySQL 8.0 表或字段是否存在的判断,不是在解析器里做的,而是在 prepare 阶段。另一件事就是,将 select 中的 符号,扩展为表上的所有列;
(b)优化阶段:主要负责将 SQL 查询语句的执行方案确定下来,比如在表里面有多个索引的时候,优化器会基于查询成本的考虑,来决定选择使用哪个索引。
(c)执行阶段:在执行的过程中,执行器就会和存储引擎交互了,交互是以记录为单位的。
流程总结:
01.连接器:建立连接,管理连接、校验用户身份;
02.查询缓存:查询语句如果命中查询缓存则直接返回,否则继续往下执行。MySQL 8.0 已删除该模块;
03.解析 SQL,通过解析器对 SQL 查询语句进行词法分析、语法分析,然后构建语法树,方便后续模块读取表名、字段、语句类型;
04.执行 SQL:执行 SQL 共有三个阶段:
预处理阶段:检查表或字段是否存在;将 select 中的 符号扩展为表上的所有列。
优化阶段:基于查询成本的考虑, 选择查询成本最小的执行计划;
执行阶段:根据执行计划执行 SQL 查询语句,从存储引擎读取记录,返回给客户端;
3、如何查看 MySQL 服务被多少个客户端连接了?
如果你想知道当前 MySQL 服务被多少个客户端连接了,你可以执行 show processlist 命令进行查看。
4、 空闲连接会一直占用着吗?
当然不是了,MySQL 定义了空闲连接的最大空闲时长,由 wait_timeout 参数控制的,默认值是 8 小时(28880秒),如果空闲连接超过了这个时间,连接器就会自动将它断开。
show variables like 'wait_timeout';
当然,我们自己也可以手动断开空闲的连接,使用的是 kill connection + id 的命令。
kill connection +6;
5、MySQL 的连接数有限制吗?
MySQL 服务支持的最大连接数由 max_connections 参数控制,比如我的 MySQL 服务默认是 151 个,超过这个值,系统就会拒绝接下来的连接请求,并报错提示“Too many connections”。
show variables like 'max_connections';
6、 怎么解决长连接占用内存的问题?
MySQL 的连接也跟 HTTP 一样,有短连接和长连接的概念,使用长连接后可能会占用内存增多,因为 MySQL 在执行查询过程中临时使用内存管理连接对象,这些连接对象资源只有在连接断开时才会释放。如果长连接累计很多,将导致 MySQL 服务占用内存太大,有可能会被系统强制杀掉,这样会发生 MySQL 服务异常重启的现象。
(1)定期断开长连接
(2)客户端主动重置连接
MySQL 5.7 版本实现了 mysql_reset_connection() 函数的接口,注意这是接口函数不是命令,那么当客户端执行了一个很大的操作后,在代码里调用 mysql_reset_connection 函数来重置连接,达到释放内存的效果。这个过程不需要重连和重新做权限验证,但是会将连接恢复到刚刚创建完时的状态。
7、执行器与存储引擎交互的三种方式是什么?
(1)主键索引查询
sql: select * from product where id = 1;
执行器第一次查询,会调用 read_first_record 函数指针指向的函数,因为优化器选择的访问类型为 const,这个函数指针被指向为 InnoDB 引擎索引查询的接口,把条件 id = 1 交给存储引擎,让存储引擎定位符合条件的第一条记录。
存储引擎通过主键索引的 B+ 树结构定位到 id = 1的第一条记录,如果记录是不存在的,就会向执行器上报记录找不到的错误,然后查询结束。如果记录是存在的,就会将记录返回给执行器;
执行器从存储引擎读到记录后,接着判断记录是否符合查询条件,如果符合则发送给客户端,如果不符合则跳过该记录。
执行器查询的过程是一个 while 循环,所以还会再查一次,但是这次因为不是第一次查询了,所以会调用 read_record 函数指针指向的函数,因为优化器选择的访问类型为 const,这个函数指针被指向为一个永远返回 - 1 的函数,所以当调用该函数的时候,执行器就退出循环,也就是结束查询了。
(2)全表扫描
sql: select * from product where name = ‘iphone’;
执行器第一次查询,会调用 read_first_record 函数指针指向的函数,因为优化器选择的访问类型为 all,这个函数指针被指向为 InnoDB 引擎全扫描的接口,让存储引擎读取表中的第一条记录;
执行器会判断读到的这条记录的 name 是不是 iphone,如果不是则跳过;如果是则将记录发给客户的(是的没错,Server 层每从存储引擎读到一条记录就会发送给客户端,之所以客户端显示的时候是直接显示所有记录的,是因为客户端是等查询语句查询完成后,才会显示出所有的记录)。
执行器查询的过程是一个 while 循环,所以还会再查一次,会调用 read_record 函数指针指向的函数,因为优化器选择的访问类型为 all,read_record 函数指针指向的还是 InnoDB 引擎全扫描的接口,所以接着向存储引擎层要求继续读刚才那条记录的下一条记录,存储引擎把下一条记录取出后就将其返回给执行器(Server层),执行器继续判断条件,不符合查询条件即跳过该记录,否则发送到客户端;
一直重复上述过程,直到存储引擎把表中的所有记录读完,然后向执行器(Server层) 返回了读取完毕的信息;
执行器收到存储引擎报告的查询完毕的信息,退出循环,停止查询。
(3)索引下推
sql: select * from t_user where age > 20 and reward = 100000;
联合索引当遇到范围查询 (>、<) 就会停止匹配,也就是 age 字段能用到联合索引,但是 reward 字段则无法利用到索引。
Server 层首先调用存储引擎的接口定位到满足查询条件的第一条二级索引记录,也就是定位到 age > 20 的第一条记录;
存储引擎定位到二级索引后,先不执行回表操作,而是先判断一下该索引中包含的列(reward列)的条件(reward 是否等于 100000)是否成立。如果条件不成立,则直接跳过该二级索引。如果成立,则执行回表操作,将完成记录返回给 Server 层。
Server 层在判断其他的查询条件(本次查询没有其他条件)是否成立,如果成立则将其发送给客户端;否则跳过该记录,然后向存储引擎索要下一条记录。
如此往复,直到存储引擎把表中的所有记录读完。
索引
1、什么是索引?
数据库中,索引的定义就是帮助存储引擎快速获取数据的一种数据结构,形象的说就是索引是数据的目录。
2、索引的分类有哪些?
(1)按数据结构分类:B+Tree 索引、HASH 索引、Full-Text 索引。
(2)按「物理存储」分类:聚簇索引(主键索引)、二级索引(辅助索引)。
主键索引的 B+Tree 的叶子节点存放的是实际数据,所有完整的用户记录都存放在主键索引的 B+Tree 的叶子节点里;
二级索引的 B+Tree 的叶子节点存放的是主键值,而不是实际数据。
聚簇索引字段选择:
01.如果有主键,默认会使用主键作为聚簇索引的索引键(key);
02.如果没有主键,就选择第一个不包含 NULL 值的唯一列作为聚簇索引的索引键(key);
03.在上面两个都没有的情况下,InnoDB 将自动生成一个隐式自增 id 列作为聚簇索引的索引键(key);
(3)按「字段特性」分类:主键索引、唯一索引、普通索引、前缀索引。
主键索引就是建立在主键字段上的索引,通常在创建表的时候一起创建,一张表最多只有一个主键索引,索引列的值不允许有空值。
唯一索引建立在 UNIQUE 字段上的索引,一张表可以有多个唯一索引,索引列的值必须唯一,但是允许有空值。
普通索引就是建立在普通字段上的索引,既不要求字段为主键,也不要求字段为 UNIQUE。
前缀索引是指对字符类型字段的前几个字符建立的索引,而不是在整个字段上建立的索引,前缀索引可以建立在字段类型为 char、 varchar、binary、varbinary 的列上。使用前缀索引的目的是为了减少索引占用的存储空间,提升查询效率。
(4)按「字段个数」分类:单列索引、联合索引。
使用联合索引时,存在最左匹配原则,也就是按照最左优先的方式进行索引的匹配。在使用联合索引进行查询的时候,如果不遵循「最左匹配原则」,联合索引会失效,这样就无法利用到索引快速查询的特性了。
(a, b, c) 联合索引,是先按 a 排序,在 a 相同的情况再按 b 排序,在 b 相同的情况再按 c 排序。所以,b 和 c 是全局无序,局部相对有序的,这样在没有遵循最左匹配原则的情况下,是无法利用到索引的。
3、联合索引的最左匹配规则与范围查询的关系
(1)select from t_table where a > 1 and b = 2 ==> 只有 a 字段用到了联合索引进行索引查询,而 b 字段并没有使用到联合索引。
(2)select from t_table where a >= 1 and b = 2 ==> 这条查询语句 a 和 b 字段都用到了联合索引进行索引查询。
(3)SELECT FROM t_table WHERE a BETWEEN 2 AND 8 AND b = 2 ==> 这条查询语句 a 和 b 字段都用到了联合索引进行索引查询。
(4)SELECT FROM t_user WHERE name like ‘j%’ and age = 22 ==> 这条查询语句 a 和 b 字段都用到了联合索引进行索引查询。
综上所示,联合索引的最左匹配原则,在遇到范围查询(如 >、<)的时候,就会停止匹配,也就是范围查询的字段可以用到联合索引,但是在范围查询字段的后面的字段无法用到联合索引。注意,对于 >=、<=、BETWEEN、like 前缀匹配的范围查询,并不会停止匹配,前面我也用了四个例子说明了。
4、什么时候适用索引?
(1)字段有唯一性限制的
(2)经常用于 WHERE 查询条件的字段,这样能够提高整个表的查询速度,如果查询条件不是一个字段,可以建立联合索引。
(3)经常用于 GROUP BY 和 ORDER BY 的字段,这样在查询的时候就不需要再去做一次排序了,因为我们都已经知道了建立索引之后在 B+Tree 中的记录都是排序好的。
5、什么时候不需要创建索引?
(1)WHERE 条件,GROUP BY,ORDER BY 里用不到的字段,索引的价值是快速定位,如果起不到定位的字段通常是不需要创建索引的,因为索引是会占用物理空间的。
(2)字段中存在大量重复数据,不需要创建索引
MySQL 还有一个查询优化器,查询优化器发现某个值出现在表的数据行中的百分比很高的时候,它一般会忽略索引,进行全表扫描。
(3)表数据太少的时候,不需要创建索引;
(4)经常更新的字段不用创建索引
6、有什么优化索引的方法?
(1)前缀索引优化
使用前缀索引是为了减小索引字段大小,可以增加一个索引页中存储的索引值,有效提高索引的查询速度。在一些大字符串的字段作为索引时,使用前缀索引可以帮助我们减小索引项的大小。
前缀索引有一定的局限性,例如:
01.order by 就无法使用前缀索引;
02.无法把前缀索引用作覆盖索引;
(2)覆盖索引优化
覆盖索引是指 SQL 中 query 的所有字段,在索引 B+Tree 的叶子节点上都能找得到的那些索引,从二级索引中查询得到记录,而不需要通过聚簇索引查询获得,可以避免回表的操作。
(3)主键索引最好是自增的
使用自增主键的好处:
如果我们使用自增主键,那么每次插入的新数据就会按顺序添加到当前索引节点的位置,不需要移动已有的数据,当页面写满,就会自动开辟一个新页面。因为每次插入一条新记录,都是追加操作,不需要重新移动数据,因此这种插入数据的方法效率非常高。
不适用自增逐渐的弊端:
如果我们使用非自增主键,由于每次插入主键的索引值都是随机的,因此每次插入新的数据时,就可能会插入到现有数据页中间的某个位置,这将不得不移动其它数据来满足新数据的插入,甚至需要从一个页面复制数据到另外一个页面,我们通常将这种情况称为页分裂。页分裂还有可能会造成大量的内存碎片,导致索引结构不紧凑,从而影响查询效率。
主键字段的长度不要太大,因为主键字段长度越小,意味着二级索引的叶子节点越小(二级索引的叶子节点存放的数据是主键值),这样二级索引占用的空间也就越小
(4)索引最好设置为 NOT NULL
索引列要设置为 NOT NULL 约束。有两个原因:
01.索引列存在 NULL 就会导致优化器在做索引选择的时候更加复杂,更加难以优化,因为可为 NULL 的列会使索引、索引统计和值比较都更复杂,比如进行索引统计时,count 会省略值为NULL 的行。
02.NULL 值是一个没意义的值,但是它会占用物理空间,所以会带来的存储空间的问题,会导致更多的存储空间占用,因为 InnoDB 默认行存储格式COMPACT,会用 1 字节空间存储 NULL 值列表
(5)防止索引失效
简单说一下,发生索引失效的情况:
01.使用左或者左右模糊匹配
02.当我们在查询条件中对索引列做了计算、函数、类型转换操作,这些情况下都会造成索引失效;
03.联合索引要能正确使用需要遵循最左匹配原则,也就是按照最左优先的方式进行索引的匹配,否则就会导致索引失效。
04.在 WHERE 子句中,如果在 OR 前的条件列是索引列,而在 OR 后的条件列不是索引列,那么索引会失效。
05.MySQL 在遇到字符串和数字比较的时候,会自动把字符串转为数字,然后再进行比较。如果字符串是索引列,而条件语句中的输入参数是数字的话,那么索引列会发生隐式类型转换,由于隐式类型转换是通过 CAST 函数实现的,等同于对索引列使用了函数,所以就会导致索引失效。
7、详细说说EXPLAIN语句查询结果中各字段的含义
(1)possible_keys 字段表示可能用到的索引;
(2)key 字段表示实际用的索引,如果这一项为 NULL,说明没有使用索引;
(3)key_len 表示索引的长度;
(4)rows 表示扫描的数据行数。
(5)type 表示数据扫描类型,我们需要重点看这个。
(6)extra 表示额外信息:
extra常见信息:
Using filesort :当查询语句中包含 group by 操作,而且无法利用索引完成排序操作的时候, 这时不得不选择相应的排序算法进行,甚至可能会通过文件排序,效率是很低的,所以要避免这种问题的出现。
Using temporary:使了用临时表保存中间结果,MySQL 在对查询结果排序时使用临时表,常见于排序 order by 和分组查询 group by。效率低,要避免这种问题的出现。
Using index:所需数据只需在索引即可全部获得,不须要再到表中取数据,也就是使用了覆盖索引,避免了回表操作,效率不错。
常见扫描类型的执行效率从低到高的顺序为:
All(全表扫描);
index(全索引扫描);
range(索引范围扫描);
ref(非唯一索引扫描);
eq_ref(唯一索引扫描);
const(结果只有一条的主键或唯一索引扫描)。
all 是最坏的情况,因为采用了全表扫描的方式。index 和 all 差不多,只不过 index 对索引表进行全扫描,这样做的好处是不再需要对数据进行排序,但是开销依然很大。所以,要尽量避免全表扫描和全索引扫描。
range 表示采用了索引范围扫描,一般在 where 子句中使用 < 、>、in、between 等关键词,只检索给定范围的行,属于范围查找。从这一级别开始,索引的作用会越来越明显,因此我们需要尽量让 SQL 查询可以使用到 range 这一级别及以上的 type 访问方式。
ref 类型表示采用了非唯一索引,或者是唯一索引的非唯一性前缀,返回数据返回可能是多条。因为虽然使用了索引,但该索引列的值并不唯一,有重复。这样即使使用索引快速查找到了第一条数据,仍然不能停止,要进行目标值附近的小范围扫描。但它的好处是它并不需要扫全表,因为索引是有序的,即便有重复值,也是在一个非常小的范围内扫描。
eq_ref 类型是使用主键或唯一索引时产生的访问方式,通常使用在多表联查中。
const 类型表示使用了主键或者唯一索引与常量值进行比较
const 类型和 eq_ref 都使用了主键或唯一索引,不过这两个类型有所区别,const 是与常量进行比较,查询效率会更快,而 eq_ref 通常用于多表联查中。
8、count()函数的效率比较
count() 是一个聚合函数,函数的参数不仅可以是字段名,也可以是其他任意表达式,该函数作用是统计符合查询条件的记录中,函数指定的参数不为 NULL 的记录有多少个。
效率:cout(1) = count(*) > count(主键) > count(字段)
count(1)、 count(*)、 count(主键字段)在执行的时候,如果表里存在二级索引,优化器就会选择二级索引进行扫描。
所以,如果要执行 count(1)、 count(*)、 count(主键字段) 时,尽量在数据表上建立二级索引,这样优化器会自动采用 key_len 最小的二级索引进行扫描,相比于扫描主键索引效率会高一些。
再来,就是不要使用 count(字段) 来统计记录个数,因为它的效率是最差的,会采用全表扫描的方式来统计。如果你非要统计表中该字段不为 NULL 的记录个数,建议给这个字段建立一个二级索引。
事务
1、事务与存储引擎的关系
事务是由 MySQL 的引擎来实现的,我们常见的 InnoDB 引擎它是支持事务的。
不过并不是所有的引擎都能支持事务,比如 MySQL 原生的 MyISAM 引擎就不支持事务,也正是这样,所以大多数 MySQL 的引擎都是用 InnoDB。
2、事务的特性
(1)原子性:一个事务中的所有操作,要么全部完成,要么全部不完成,不会结束在中间某个环节。
(2)一致性:是指事务操作前和操作后,数据满足完整性约束,数据库保持一致性状态。
(3)隔离性:数据库允许多个并发事务同时对其数据进行读写和修改的能力,隔离性可以防止多个事务并发执行时由于交叉执行而导致数据的不一致,因为多个事务同时使用相同的数据时,不会相互干扰,每个事务都有一个完整的数据空间,对其他并发事务是隔离的。
(4)持久性:事务处理结束后,对数据的修改就是永久的,即便系统故障也不会丢失。
3、事务特性的实现方式
(1)持久性是通过 redo log (重做日志)来保证的;
(2)原子性是通过 undo log(回滚日志) 来保证的;
(3)隔离性是通过 MVCC(多版本并发控制) 或锁机制来保证的;
(4)一致性则是通过持久性+原子性+隔离性来保证;
4、并行事务会引发什么问题?
(1)如果一个事务「读到」了另一个「未提交事务修改过的数据」,就意味着发生了「脏读」现象。
(2)在一个事务内多次读取同一个数据,如果出现前后两次读到的数据不一样的情况,就意味着发生了「不可重复读」现象。
(3)在一个事务内多次查询某个符合查询条件的「记录数量」,如果出现前后两次查询到的记录数量不一样的情况,就意味着发生了「幻读」现象。
5、事务的隔离级别有哪些?
(1)读未提交:指一个事务还没提交时,它做的变更就能被其他事务看到;
(2)读提交:指一个事务提交之后,它做的变更才能被其他事务看到;
(3)可重复读:指一个事务执行过程中看到的数据,一直跟这个事务启动时看到的数据是一致的。
(4)串行化:会对记录加上读写锁,在多个事务对这条记录进行读写操作时,如果发生了读写冲突的时候,后访问的事务必须等前一个事务执行完成,才能继续执行;
在「读未提交」隔离级别下,可能发生脏读、不可重复读和幻读现象;
在「读提交」隔离级别下,可能发生不可重复读和幻读现象,但是不可能发生脏读现象;
在「可重复读」隔离级别下,可能发生幻读现象,但是不可能脏读和不可重复读现象;
在「串行化」隔离级别下,脏读、不可重复读和幻读现象都不可能会发生。
6、MySQL的InnoDB引擎是怎么解决幻读问题的?
(1)针对快照读(普通 select 语句),是通过 MVCC 方式解决了幻读,因为可重复读隔离级别下,事务执行过程中看到的数据,一直跟这个事务启动时看到的数据是一致的,即使中途有其他事务插入了一条数据,是查询不出来这条数据的,所以就很好了避免幻读问题。
(2)针对当前读(select … for update 等语句),是通过 next-key lock(记录锁+间隙锁)方式解决了幻读,因为当执行 select … for update 语句的时候,会加上 next-key lock,如果有其他事务在 next-key lock 锁范围内插入了一条记录,那么这个插入语句就会被阻塞,无法成功插入,所以就很好了避免幻读问题。
7、四种隔离级别具体是如何实现的呢?
(1)对于「读未提交」隔离级别的事务来说,因为可以读到未提交事务修改的数据,所以直接读取最新的数据就好了;
(2)对于「串行化」隔离级别的事务来说,通过加读写锁的方式来避免并行访问;
(3)对于「读提交」和「可重复读」隔离级别的事务来说,它们是通过 Read View 来实现的,它们的区别在于创建 Read View 的时机不同。
「读提交」隔离级别是在「每个语句执行前」都会重新生成一个 Read View
「可重复读」隔离级别是「启动事务时」生成一个 Read View,然后整个事务期间都在用这个 Read View。
执行「开始事务」命令,并不意味着启动了事务。在 MySQL 有两种开启事务的命令,分别是:
begin/start transaction 命令;
start transaction with consistent snapshot 命令;
这两种开启事务的命令,事务的启动时机是不同的:
执行了 begin/start transaction 命令后,并不代表事务启动了。只有在执行这个命令后,执行了增删查改操作的 SQL 语句,才是事务真正启动的时机;
执行了 start transaction with consistent snapshot 命令,就会马上启动事务。
8、具体谈谈Read View
(1)Read View 中四个字段作用;
m_ids :指的是在创建 Read View 时,当前数据库中「活跃事务」的事务 id 列表,注意是一个列表,“活跃事务”指的就是,启动了但还没提交的事务。
min_trx_id :指的是在创建 Read View 时,当前数据库中「活跃事务」中事务 id 最小的事务,也就是 m_ids 的最小值。
max_trx_id :这个并不是 m_ids 的最大值,而是创建 Read View 时当前数据库中应该给下一个事务的 id 值,也就是全局事务中最大的事务 id 值 + 1;
creator_trx_id :指的是创建该 Read View 的事务的事务 id。
(2)聚簇索引记录中两个跟事务有关的隐藏列;
trx_id,当一个事务对某条聚簇索引记录进行改动时,就会把该事务的事务 id 记录在 trx_id 隐藏列里;
roll_pointer,每次对某条聚簇索引记录进行改动时,都会把旧版本的记录写入到 undo 日志中,然后这个隐藏列是个指针,指向每一个旧版本记录,于是就可以通过它找到修改前的记录。
(3)MVCC流程
如果记录的 trx_id 值小于 Read View 中的 min_trx_id 值,表示这个版本的记录是在创建 Read View 前已经提交的事务生成的,所以该版本的记录对当前事务可见。
如果记录的 trx_id 值大于等于 Read View 中的 max_trx_id 值,表示这个版本的记录是在创建 Read View 后才启动的事务生成的,所以该版本的记录对当前事务不可见。
如果记录的 trx_id 值在 Read View 的 min_trx_id 和 max_trx_id 之间,需要判断 trx_id 是否在 m_ids 列表中:在 m_ids 列表中则不可见,不在m_ids列表中则可见。
这种通过「版本链」来控制并发事务访问同一个记录时的行为就叫 MVCC(多版本并发控制)。
9、可重复读隔离级别下完全解决幻读了嘛?
可重复读隔离级别下虽然很大程度上避免了幻读,但是还是没有能完全解决幻读。
可重复读幻读情况一:
// 事务A
mysql> begin;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from t_stu where id = 5;
Empty set (0.01 sec)
// 事务B
mysql> begin;
Query OK, 0 rows affected (0.00 sec)
mysql> insert into t_stu values(5, '小美', 18);
Query OK, 1 row affected (0.00 sec)
mysql> commit;
Query OK, 0 rows affected (0.00 sec)
// 事务A
mysql> update t_stu set name = '小林coding' where id = 5;
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0
mysql> select * from t_stu where id = 5;
+----+--------------+------+
| id | name | age |
+----+--------------+------+
| 5 | 小林coding | 18 |
+----+--------------+------+
在可重复读隔离级别下,事务 A 第一次执行普通的 select 语句时生成了一个 ReadView,之后事务 B 向表中新插入了一条 id = 5 的记录并提交。接着,事务 A 对 id = 5 这条记录进行了更新操作,在这个时刻,这条新记录的 trx_id 隐藏列的值就变成了事务 A 的事务 id,之后事务 A 再使用普通 select 语句去查询这条记录时就可以看到这条记录了,于是就发生了幻读。
可重复读幻读情况二:
01-T1 时刻:事务 A 先执行「快照读语句」:select * from t_test where id > 100 得到了 3 条记录。
02.T2 时刻:事务 B 往插入一个 id= 200 的记录并提交;
03.T3 时刻:事务 A 再执行「当前读语句」 select * from t_test where id > 100 for update 就会得到 4 条记录,此时也发生了幻读现象。
要避免这类特殊场景下发生幻读的现象的话,就是尽量在开启事务之后,马上执行 select … for update 这类当前读的语句,因为它会对记录加 next-key lock,从而避免其他事务插入一条新记录。
锁
1、MySQL 有哪些锁?
(1)全局锁
加了全局锁之后,整个数据库就处于只读状态了,这时其他线程执行以下操作,都会被阻塞:
对数据的增删改操作,比如 insert、delete、update等语句;
对表结构的更改操作,比如 alter table、drop table 等语句。
// 加全局锁
flush tables with read lock
// 解锁
unlock tables
使用场景:全局锁主要应用于做全库逻辑备份,这样在备份数据库期间,不会因为数据或表结构的更新,而出现备份文件的数据与预期的不一样。
缺点:加上全局锁,意味着整个数据库都是只读状态。那么如果数据库里有很多数据,备份就会花费很多的时间,关键是备份期间,业务只能读数据,而不能更新数据,这样会造成业务停滞。
如果数据库的引擎支持的事务支持可重复读的隔离级别,那么在备份数据库之前先开启事务,会先创建 Read View,然后整个事务执行期间都在用这个 Read View,而且由于 MVCC 的支持,备份期间业务依然可以对数据进行更新操作。
因为在可重复读的隔离级别下,即使其他事务更新了表的数据,也不会影响备份数据库时的 Read View,这就是事务四大特性中的隔离性,这样备份期间备份的数据一直是在开启事务时的数据。
(2)表级锁
2-1:表锁
表锁除了会限制别的线程的读写外,也会限制本线程接下来的读写操作。
//表级别的共享锁,也就是读锁;
lock tables t_student read;
//表级别的独占锁,也就是写锁;
lock tables t_stuent write;
// 解锁
unlock tables;
// 另外,当会话退出后,也会释放所有表锁。
2-2:元素据锁
我们不需要显示的使用 MDL,因为当我们对数据库表进行操作时,会自动给这个表加上 MDL:
01.对一张表进行 CRUD 操作时,加的是 MDL 读锁;
02.对一张表做结构变更操作的时候,加的是 MDL 写锁;
MDL 是在事务提交后才会释放,这意味着事务执行期间,MDL 是一直持有的。
申请 MDL 锁的操作会形成一个队列,队列中写锁获取优先级高于读锁,一旦出现 MDL 写锁等待,会阻塞后续该表的所有 CRUD 操作。
所以为了能安全的对表结构进行变更,在对表结构变更前,先要看看数据库中的长事务,是否有事务已经对表加上了 MDL 读锁,如果可以考虑 kill 掉这个长事务,然后再做表结构的变更。
2-3:意向锁
意向锁的目的是为了快速判断表里是否有记录被加锁。
加锁场景:
01.在使用 InnoDB 引擎的表里对某些记录加上「共享锁」之前,需要先在表级别加上一个「意向共享锁」;
02.在使用 InnoDB 引擎的表里对某些纪录加上「独占锁」之前,需要先在表级别加上一个「意向独占锁」;
意向共享锁和意向独占锁是表级锁,不会和行级的共享锁和独占锁发生冲突,而且意向锁之间也不会发生冲突,只会和共享表锁(lock tables … read)和独占表锁(lock tables … write)发生冲突。
如果没有「意向锁」,那么加「独占表锁」时,就需要遍历表里所有记录,查看是否有记录存在独占锁,这样效率会很慢。
那么有了「意向锁」,由于在对记录加独占锁前,先会加上表级别的意向独占锁,那么在加「独占表锁」时,直接查该表是否有意向独占锁,如果有就意味着表里已经有记录被加了独占锁,这样就不用去遍历表里的记录。
2-4 AUTO-INC 锁
表里的主键通常都会设置成自增的,这是通过对主键字段声明 AUTO_INCREMENT 属性实现的。
AUTO-INC 锁是特殊的表锁机制,锁不是再一个事务提交后才释放,而是再执行完插入语句后就会立即释放。
在 MySQL 5.1.22 版本开始,InnoDB 存储引擎提供了一种轻量级的锁来实现自增。
一样也是在插入数据的时候,会为被 AUTO_INCREMENT 修饰的字段加上轻量级锁,然后给该字段赋值一个自增的值,就把这个轻量级锁释放了,而不需要等待整个插入语句执行完后才释放锁。
InnoDB 存储引擎提供了个 innodb_autoinc_lock_mode 的系统变量,是用来控制选择用 AUTO-INC 锁,还是轻量级的锁。
当 innodb_autoinc_lock_mode = 0,就采用 AUTO-INC 锁,语句执行结束后才释放锁;
当 innodb_autoinc_lock_mode = 2,就采用轻量级锁,申请自增主键后就释放锁,并不需要等语句执行后才释放。
当 innodb_autoinc_lock_mode = 1:普通 insert 语句,自增锁在申请之后就马上释放;类似 insert … select 这样的批量插入数据的语句,自增锁还是要等语句结束后才被释放;
当 innodb_autoinc_lock_mode = 2 时,并且 binlog_format = statement的时候,会出现主备数据不一致的情况。
而采用binlog_format = row,既能提升并发性,又不会出现数据一致性问题。
(3)行锁
InnoDB 引擎是支持行级锁的,而 MyISAM 引擎并不支持行级锁。
前面也提到,普通的 select 语句是不会对记录加锁的,因为它属于快照读。如果要在查询时对记录加行锁,可以使用下面这两个方式,这种查询会加锁的语句称为锁定读。
//对读取的记录加共享锁
select ... lock in share mode;
//对读取的记录加独占锁
select ... for update;
当事务提交了,锁就会被释放
3-1:Record Lock
Record Lock 称为记录锁,锁住的是一条记录。而且记录锁是有 S 锁和 X 锁之分的。
3-2:Gap Lock
Gap Lock 称为间隙锁,只存在于可重复读隔离级别,目的是为了解决可重复读隔离级别下幻读的现象。
假设,表中有一个范围 id 为(3,5)间隙锁,那么其他事务就无法插入 id = 4 这条记录了,这样就有效的防止幻读现象的发生。
间隙锁虽然存在 X 型间隙锁和 S 型间隙锁,但是并没有什么区别,间隙锁之间是兼容的,即两个事务可以同时持有包含共同间隙范围的间隙锁,并不存在互斥关系,因为间隙锁的目的是防止插入幻影记录而提出的。
3-3:Next-Key Lock
Next-Key Lock 称为临键锁,是 Record Lock + Gap Lock 的组合,锁定一个范围,并且锁定记录本身。
假设,表中有一个范围 id 为(3,5] 的 next-key lock,那么其他事务即不能插入 id = 4 记录,也不能修改 id = 5 这条记录。
next-key lock 即能保护该记录,又能阻止其他事务将新纪录插入到被保护记录前面的间隙中。
next-key lock 是包含间隙锁+记录锁的,如果一个事务获取了 X 型的 next-key lock,那么另外一个事务在获取相同范围的 X 型的 next-key lock 时,是会被阻塞的。
3-4:插入意向锁
一个事务在插入一条记录的时候,需要判断插入位置是否已被其他事务加了间隙锁(next-key lock 也包含间隙锁)。
如果有的话,插入操作就会发生阻塞,直到拥有间隙锁的那个事务提交为止(释放间隙锁的时刻),在此期间会生成一个插入意向锁,表明有事务想在某个区间插入新记录,但是现在处于等待状态。
MySQL 加锁时,是先生成锁结构,然后设置锁的状态,如果锁状态是等待状态,并不是意味着事务成功获取到了锁,只有当锁状态为正常状态时,才代表事务成功获取到了锁
插入意向锁名字虽然有意向锁,但是它并不是意向锁,它是一种特殊的间隙锁,属于行级别锁。
如果说间隙锁锁住的是一个区间,那么「插入意向锁」锁住的就是一个点。因而从这个角度来说,插入意向锁确实是一种特殊的间隙锁。
插入意向锁与间隙锁的另一个非常重要的差别是:尽管「插入意向锁」也属于间隙锁,但两个事务却不能在同一时间内,一个拥有间隙锁,另一个拥有该间隙区间内的插入意向锁(当然,插入意向锁如果不在间隙锁区间内则是可以的)。
2、MySQL是怎么加行锁的?
行级锁加锁规则比较复杂,不同的场景,加锁的形式是不同的。
加锁的对象是索引,加锁的基本单位是 next-key lock,它是由记录锁和间隙锁组合而成的,next-key lock 是前开后闭区间,而间隙锁是前开后开区间。
但是,next-key lock 在一些场景下会退化成记录锁或间隙锁。
在能使用记录锁或者间隙锁就能避免幻读现象的场景下, next-key lock 就会退化成退化成记录锁或间隙锁。
3、 next-key lock退化场景
(1)唯一索引等值查询
当查询的记录是「存在」的,在索引树上定位到这一条记录后,将该记录的索引中的 next-key lock 会退化成「记录锁」。
当查询的记录是「不存在」的,在索引树找到第一条大于该查询记录的记录后,将该记录的索引中的 next-key lock 会退化成「间隙锁」。
(2)唯一索引范围查询
当唯一索引进行范围查询时,会对每一个扫描到的索引加 next-key 锁,然后如果遇到下面这些情况,会退化成记录锁或者间隙锁:
01.针对「大于等于」的范围查询,因为存在等值查询的条件,那么如果等值查询的记录是存在于表中,那么该记录的索引中的 next-key 锁会退化成记录锁。
02.针对「小于或者小于等于」的范围查询,要看条件值的记录是否存在于表中:
(2-1)当条件值的记录不在表中,那么不管是「小于」还是「小于等于」条件的范围查询,扫描到终止范围查询的记录时,该记录的索引的 next-key 锁会退化成间隙锁,其他扫描到的记录,都是在这些记录的索引上加 next-key 锁。
(2-2)当条件值的记录在表中,如果是「小于」条件的范围查询,扫描到终止范围查询的记录时,该记录的索引的 next-key 锁会退化成间隙锁,其他扫描到的记录,都是在这些记录的索引上加 next-key 锁;如果「小于等于」条件的范围查询,扫描到终止范围查询的记录时,该记录的索引 next-key 锁不会退化成间隙锁。其他扫描到的记录,都是在这些记录的索引上加 next-key 锁。
(3)非唯一索引等值查询
当我们用非唯一索引进行等值查询的时候,因为存在两个索引,一个是主键索引,一个是非唯一索引(二级索引),所以在加锁时,同时会对这两个索引都加锁,但是对主键索引加锁的时候,只有满足查询条件的记录才会对它们的主键索引加锁。
当查询的记录「存在」时,由于不是唯一索引,所以肯定存在索引值相同的记录,于是非唯一索引等值查询的过程是一个扫描的过程,直到扫描到第一个不符合条件的二级索引记录就停止扫描,然后在扫描的过程中,对扫描到的二级索引记录加的是 next-key 锁,而对于第一个不符合条件的二级索引记录,该二级索引的 next-key 锁会退化成间隙锁。同时,在符合查询条件的记录的主键索引上加记录锁。
当查询的记录「不存在」时,扫描到第一条不符合条件的二级索引记录,该二级索引的 next-key 锁会退化成间隙锁。因为不存在满足查询条件的记录,所以不会对主键索引加锁。
(4)非唯一索引范围查询
非唯一索引和主键索引的范围查询的加锁也有所不同,不同之处在于非唯一索引范围查询,索引的 next-key lock 不会有退化为间隙锁和记录锁的情况,也就是非唯一索引进行范围查询时,对二级索引记录加锁都是加 next-key 锁。
(5)没有加索引的查询
如果锁定读查询语句,没有使用索引列作为查询条件,或者查询语句没有走索引查询,导致扫描是全表扫描。那么,每一条记录的索引上都会加 next-key 锁,这样就相当于锁住的全表,这时如果其他事务对该表进行增、删、改操作的时候,都会被阻塞。
不只是锁定读查询语句不加索引才会导致这种情况,update 和 delete 语句如果查询条件不加索引,那么由于扫描的方式是全表扫描,于是就会对每一条记录的索引上都会加 next-key 锁,这样就相当于锁住的全表。
因此,在线上在执行 update、delete、select … for update 等具有加锁性质的语句,一定要检查语句是否走了索引,如果是全表扫描的话,会对每一个索引加 next-key 锁,相当于把整个表锁住了,这是挺严重的问题。
解决上述锁表的方案:将 MySQL 里的 sql_safe_updates 参数设置为 1,开启安全更新模式。
大致的意思是,当 sql_safe_updates 设置为 1 时。update 语句必须满足如下条件之一才能执行成功:
01.使用 where,并且 where 条件中必须有索引列;
02.使用 limit;
03.同时使用 where 和 limit,此时 where 条件中可以没有索引列;
日志
1、为什么需要 undo log?
(1)实现事务回滚,保障事务的原子性。
事务处理过程中,如果出现了错误或者用户执 行了 ROLLBACK 语句,MySQL 可以利用 undo log 中的历史数据将数据恢复到事务开始之前的状态。
undo log 是一种用于撤销回退的日志。在事务没提交之前,MySQL 会先记录更新前的数据到 undo log 日志文件里面,当事务回滚时,可以利用 undo log 来进行回滚。
在插入一条记录时,要把这条记录的主键值记下来,这样之后回滚时只需要把这个主键值对应的记录删掉就好了;
在删除一条记录时,要把这条记录中的内容都记下来,这样之后回滚时再把由这些内容组成的记录插入到表中就好了;
在更新一条记录时,要把被更新的列的旧值记下来,这样之后回滚时再把这些列更新为旧值就好了。
(2)实现 MVCC(多版本并发控制)关键因素之一。
MVCC 是通过 ReadView + undo log 实现的。undo log 为每条记录保存多份历史数据,MySQL 在执行快照读(普通 select 语句)的时候,会根据事务的 Read View 里的信息,顺着 undo log 的版本链找到满足其可见性的记录。
2、为什么需要 Buffer Pool?
MySQL 的数据都是存在磁盘中的,那么我们要更新一条记录的时候,得先要从磁盘读取该记录,然后在内存中修改这条记录。那修改完这条记录是选择直接写回到磁盘,还是选择缓存起来呢?
当然是缓存起来好,这样下次有查询语句命中了这条记录,直接读取缓存中的记录,就不需要从磁盘获取数据了。
为此,Innodb 存储引擎设计了一个缓冲池(Buffer Pool),来提高数据库的读写性能。
当读取数据时,如果数据存在于 Buffer Pool 中,客户端就会直接读取 Buffer Pool 中的数据,否则再去磁盘中读取。
当修改数据时,如果数据存在于 Buffer Pool 中,那直接修改 Buffer Pool 中数据所在的页,然后将其页设置为脏页(该页的内存数据和磁盘上的数据已经不一致),为了减少磁盘I/O,不会立即将脏页写入磁盘,后续由后台线程选择一个合适的时机将脏页写入到磁盘。
3、Buffer Pool 缓存什么?
(1)数据页
(2)索引页
(3)插入缓存页
(4)undo页
(5)自适应哈希索引
(6)锁信息
开启事务后,InnoDB 层更新记录前,首先要记录相应的 undo log,如果是更新操作,需要把被更新的列的旧值记下来,也就是要生成一条 undo log,undo log 会写入 Buffer Pool 中的 Undo 页面。
4、为什么需要 redo log ?
(1)实现事务的持久性,让 MySQL 有 crash-safe 的能力
保证 MySQL 在任何时间段突然崩溃,重启后之前已提交的记录都不会丢失;
Buffer Pool 是提高了读写效率没错,但是问题来了,Buffer Pool 是基于内存的,而内存总是不可靠,万一断电重启,还没来得及落盘的脏页数据就会丢失。
为了防止断电导致数据丢失的问题,当有一条记录需要更新的时候,InnoDB 引擎就会先更新内存(同时标记为脏页),然后将本次对这个页的修改以 redo log 的形式记录下来,这个时候更新就算完成了。
后续,InnoDB 引擎会在适当的时候,由后台线程将缓存在 Buffer Pool 的脏页刷新到磁盘里,这就是 WAL (Write-Ahead Logging)技术
WAL 技术指的是, MySQL 的写操作并不是立刻写到磁盘上,而是先写日志,然后在合适的时间再写到磁盘上。
(2)将写操作从「随机写」变成了「顺序写」,提升 MySQL 写入磁盘的性能。
我们思考一个问题,redo log 要写到磁盘,数据也要写磁盘,为什么要多此一举?
写入 redo log 的方式使用了追加操作, 所以磁盘操作是顺序写,而写入数据需要先找到写入位置,然后才写到磁盘,所以磁盘操作是随机写。
磁盘的「顺序写 」比「随机写」 高效的多,因此 redo log 写入磁盘的开销更小。
5、什么是 redo log?
redo log 是物理日志,记录了某个数据页做了什么修改,比如对 XXX 表空间中的 YYY 数据页 ZZZ 偏移量的地方做了AAA 更新,每当执行一个事务就会产生这样的一条或者多条物理日志。
在事务提交时,只要先将 redo log 持久化到磁盘即可,可以不需要等到将缓存在 Buffer Pool 里的脏页数据持久化到磁盘。
当系统崩溃时,虽然脏页数据没有持久化,但是 redo log 已经持久化,接着 MySQL 重启后,可以根据 redo log 的内容,将所有数据恢复到最新的状态。
6、产生的 redo log 是直接写入磁盘的吗?
实际上, 执行一个事务的过程中,产生的 redo log 也不是直接写入磁盘的,因为这样会产生大量的 I/O 操作,而且磁盘的运行速度远慢于内存。
所以,redo log 也有自己的缓存—— redo log buffer,每当产生一条 redo log 时,会先写入到 redo log buffer,后续在持久化到磁盘。
redo log buffer 默认大小 16 MB,可以通过 innodb_log_Buffer_size 参数动态的调整大小,增大它的大小可以让 MySQL 处理「大事务」是不必写入磁盘,进而提升写 IO 性能。
7、redo log 什么时候刷盘?
(1)MySQL 正常关闭时;
(2)当 redo log buffer 中记录的写入量大于 redo log buffer 内存空间的一半时,会触发落盘;
(3)InnoDB 的后台线程每隔 1 秒,将 redo log buffer 持久化到磁盘。
(4)每次事务提交时都将缓存在 redo log buffer 里的 redo log 直接持久化到磁盘(这个策略可由 innodb_flush_log_at_trx_commit 参数控制)
innodb_flush_log_at_trx_commit 参数:
01.当设置该参数为 0 时,表示每次事务提交时 ,还是将 redo log 留在 redo log buffer 中 ,该模式下在事务提交时不会主动触发写入磁盘的操作。
02.当设置该参数为 1 时,表示每次事务提交时,都将缓存在 redo log buffer 里的 redo log 直接持久化到磁盘,这样可以保证 MySQL 异常重启之后数据不会丢失。
03.当设置该参数为 2 时,表示每次事务提交时,都只是缓存在 redo log buffer 里的 redo log 写到 redo log 文件,注意写入到「 redo log 文件」并不意味着写入到了磁盘,因为操作系统的文件系统中有个 Page Cache,Page Cache 是专门用来缓存文件数据的,所以写入「 redo log文件」意味着写入到了操作系统的文件缓存。
innodb_flush_log_at_trx_commit 为 0 和 2 的时候,InnoDB 的后台线程每隔 1 秒落盘一次redo log
8、redo log 文件写满了怎么办?
默认情况下, InnoDB 存储引擎有 1 个重做日志文件组( redo log Group),「重做日志文件组」由有 2 个 redo log 文件组成,这两个 redo 日志的文件名叫 :ib_logfile0 和 ib_logfile1 。
在重做日志组中,每个 redo log File 的大小是固定且一致的,假设每个 redo log File 设置的上限是 1 GB,那么总共就可以记录 2GB 的操作。
重做日志文件组是以循环写的方式工作的,从头开始写,写到末尾就又回到开头,相当于一个环形。
所以 InnoDB 存储引擎会先写 ib_logfile0 文件,当 ib_logfile0 文件被写满的时候,会切换至 ib_logfile1 文件,当 ib_logfile1 文件也被写满时,会切换回 ib_logfile0 文件。
redo log 是循环写的方式,相当于一个环形,InnoDB 用 write pos 表示 redo log 当前记录写到的位置,用 checkpoint 表示当前要擦除的位置:
如果 write pos 追上了 checkpoint,就意味着 redo log 文件满了,这时 MySQL 不能再执行新的更新操作,也就是说 MySQL 会被阻塞(因此所以针对并发量大的系统,适当设置 redo log 的文件大小非常重要),此时会停下来将 Buffer Pool 中的脏页刷新到磁盘中,然后标记 redo log 哪些记录可以被擦除,接着对旧的 redo log 记录进行擦除,等擦除完旧记录腾出了空间,checkpoint 就会往后移动(图中顺时针),然后 MySQL 恢复正常运行,继续执行新的更新操作。
9、redo log和 binlog的区别
(1)适用对象不同:
binlog 是 MySQL 的 Server 层实现的日志,所有存储引擎都可以使用;
redo log 是 Innodb 存储引擎实现的日志;
(2)文件格式不同:
binlog 有 3 种格式类型,分别是 STATEMENT(默认格式)、ROW、 MIXED
STATEMENT:每一条修改数据的 SQL 都会被记录到 binlog 中,主从复制中 slave 端再根据 SQL 语句重现。但 STATEMENT 有动态函数的问题,比如你用了 uuid 或者 now 这些函数,你在主库上执行的结果并不是你在从库执行的结果,这种随时在变的函数会导致复制的数据不一致;
ROW:记录行数据最终被修改成什么样了(这种格式的日志,就不能称为逻辑日志了),不会出现 STATEMENT 下动态函数的问题。但 ROW 的缺点是每行数据的变化结果都会被记录,比如执行批量 update 语句,更新多少行数据就会产生多少条记录,使 binlog 文件过大,而在 STATEMENT 格式下只会记录一个 update 语句而已;
MIXED:包含了 STATEMENT 和 ROW 模式,它会根据不同的情况自动使用 ROW 模式和 STATEMENT 模式;
redo log是物理日志,记录的是在某个数据页做了什么修改,比如对 XXX 表空间中的 YYY 数据页 ZZZ 偏移量的地方做了AAA 更新;
(3)写入方式不同
binlog 是追加写,写满一个文件,就创建一个新的文件继续写,不会覆盖以前的日志,保存的是全量的日志。
redo log 是循环写,日志空间大小是固定,全部写满就从头开始,保存未被刷入磁盘的脏页日志。
(4)用途不同:
binlog 用于备份恢复、主从复制;
redo log 用于掉电等故障恢复。
10、如果不小心整个数据库的数据被删除了,能使用 redo log 文件恢复数据吗?
不可以使用 redo log 文件恢复,只能使用 binlog 文件恢复。
因为 redo log 文件是循环写,是会边写边擦除日志的,只记录未被刷入磁盘的数据的物理日志,已经刷入磁盘的数据都会从 redo log 文件里擦除。
binlog 文件保存的是全量的日志,也就是保存了所有数据变更的情况,理论上只要记录在 binlog 上的数据,都可以恢复,所以如果不小心整个数据库的数据被删除了,得用 binlog 文件恢复数据。
11、主从复制的流程是怎么样的?
(1)MySQL 主库在收到客户端提交事务的请求之后,会先写入 binlog,再提交事务,更新存储引擎中的数据,事务提交完成后,返回给客户端“操作成功”的响应。
(2)从库会创建一个专门的 I/O 线程,连接主库的 log dump 线程,来接收主库的 binlog 日志,再把 binlog 信息写入 relay log 的中继日志里,再返回给主库“复制成功”的响应。
(3)从库会创建一个用于回放 binlog 的线程,去读 relay log 中继日志,然后回放 binlog 更新存储引擎中的数据,最终实现主从的数据一致性。
12、从库是不是越多越好?
不是的。
因为从库数量增加,从库连接上来的 I/O 线程也比较多,主库也要创建同样多的 log dump 线程来处理复制的请求,对主库资源消耗比较高,同时还受限于主库的网络带宽。
13、MySQL 主从复制还有哪些模型?
(1)同步复制:MySQL 主库提交事务的线程要等待所有从库的复制成功响应,才返回客户端结果。这种方式在实际项目中,基本上没法用,原因有两个:一是性能很差,因为要复制到所有节点才返回响应;二是可用性也很差,主库和所有从库任何一个数据库出问题,都会影响业务。
(2)异步复制(默认模型):MySQL 主库提交事务的线程并不会等待 binlog 同步到各从库,就返回客户端结果。这种模式一旦主库宕机,数据就会发生丢失。
(3)半同步复制:MySQL 5.7 版本之后增加的一种复制方式,介于两者之间,事务线程不用等待所有的从库复制成功响应,只要一部分复制成功响应回来就行,比如一主二从的集群,只要数据成功复制到任意一个从库上,主库的事务线程就可以返回给客户端。这种半同步复制的方式,兼顾了异步复制和同步复制的优点,即使出现主库宕机,至少还有一个从库有最新的数据,不存在数据丢失的风险。
14、binlog 什么时候刷盘?
binlog写入流程:事务执行过程中,先把日志写到 binlog cache(Server 层的 cache),事务提交的时候,再把 binlog cache 写到 binlog 文件中,并清空 binlog cache。最后由配置决定binlog文件什么时候落到磁盘上。
一个事务的 binlog 是不能被拆开的,因此无论这个事务有多大(比如有很多条语句),也要保证一次性写入。这是因为有一个线程只能同时有一个事务在执行的设定,所以每当执行一个 begin/start transaction 的时候,就会默认提交上一个事务,这样如果一个事务的 binlog 被拆开的时候,在备库执行就会被当做多个事务分段自行,这样破坏了原子性,是有问题的。
MySQL 给每个线程分配了一片内存用于缓冲 binlog ,该内存叫 binlog cache,参数 binlog_cache_size 用于控制单个线程内 binlog cache 所占内存的大小。如果超过了这个参数规定的大小,就要暂存到磁盘。
虽然每个线程有自己 binlog cache,但是最终都写到同一个 binlog 文件
图中的 write,指的就是指把日志写入到 binlog 文件,但是并没有把数据持久化到磁盘,因为数据还缓存在文件系统的 page cache 里,write 的写入速度还是比较快的,因为不涉及磁盘 I/O。
图中的 fsync,才是将数据持久化到磁盘的操作,这里就会涉及磁盘 I/O,所以频繁的 fsync 会导致磁盘的 I/O 升高。
MySQL提供一个 sync_binlog 参数来控制数据库的 binlog 刷到磁盘上的频率:
01.sync_binlog = 0 的时候,表示每次提交事务都只 write,不 fsync,后续交由操作系统决定何时将数据持久化到磁盘;
02.sync_binlog = 1 的时候,表示每次提交事务都会 write,然后马上执行 fsync;
03.sync_binlog =N(N>1) 的时候,表示每次提交事务都 write,但累积 N 个事务后才 fsync。
15、一条Update语句的完整过程
(1)执行器负责具体执行,会调用存储引擎的接口,通过主键索引树搜索获取 id = 1 这一行记录(在 buffer pool 中,就直接返回给执行器更新;不在 buffer pool,将数据页从磁盘读入到 buffer pool,返回记录给执行器)
(2)执行器得到聚簇索引记录后,会看一下更新前的记录和更新后的记录是否一样(一样就无需走后续流程,不一样的话就把更新前的记录和更新后的记录都当作参数传给 InnoDB 层,让 InnoDB 真正的执行更新记录的操作;)
(3)开启事务, InnoDB 层更新记录前,首先要记录相应的 undo log,因为这是更新操作,需要把被更新的列的旧值记下来,也就是要生成一条 undo log,undo log 会写入 Buffer Pool 中的 Undo 页面,不过在内存修改该 Undo 页面后,需要记录对应的 redo log。
(4)InnoDB 层开始更新记录,会先更新内存(同时标记为脏页),然后将记录写到 redo log 里面,这个时候更新就算完成了。为了减少磁盘I/O,不会立即将脏页写入磁盘,后续由后台线程选择一个合适的时机将脏页写入到磁盘。这就是 WAL 技术,MySQL 的写操作并不是立刻写到磁盘上,而是先写 redo 日志,然后在合适的时间再将修改的行数据写到磁盘上。
(5)至此,一条记录更新完了。
(6)在一条更新语句执行完成后,然后开始记录该语句对应的 binlog,此时记录的 binlog 会被保存到 binlog cache,并没有刷新到硬盘上的 binlog 文件,在事务提交时才会统一将该事务运行过程中的所有 binlog 刷新到硬盘。
(7)事务提交,剩下的就是「两阶段提交」的事情了
16、为什么需要两阶段提交?
事务提交后,redo log 和 binlog 都要持久化到磁盘,但是这两个是独立的逻辑,可能出现半成功的状态,这样就造成两份日志之间的逻辑不一致。
(1)如果在将 redo log 刷入到磁盘之后, MySQL 突然宕机了,而 binlog 还没有来得及写入。在主从架构中,binlog 会被复制到从库,由于 binlog 丢失了某些更新语句,会导致主从数据不一致。
(2)如果在将 binlog 刷入到磁盘之后, MySQL 突然宕机了,而 redo log 还没有来得及写入。由于 redo log 还没写,崩溃恢复以后这个事务无效,主库中可能丢失某些更新语句,binlog 会被复制到从库,从库执行了这些更新语句,也会导致主从数据不一致。
MySQL 为了避免出现两份日志之间的逻辑不一致的问题,使用了「两阶段提交」来解决,两阶段提交其实是分布式事务一致性协议,它可以保证多个逻辑操作要不全部成功,要不全部失败,不会出现半成功的状态。
17、什么是两阶段提交?
在 MySQL 的 InnoDB 存储引擎中,开启 binlog 的情况下,MySQL 会同时维护 binlog 日志与 InnoDB 的 redo log,为了保证这两个日志的一致性,MySQL 使用了内部 XA 事务,内部 XA 事务由 binlog 作为协调者,存储引擎是参与者。
事务的提交过程有两个阶段,就是将 redo log 的写入拆成了两个步骤:prepare 和 commit,中间再穿插写入binlog:
(1)prepare 阶段:将 XID(内部 XA 事务的 ID) 写入到 redo log,同时将 redo log 对应的事务状态设置为 prepare,然后将 redo log 持久化到磁盘(innodb_flush_log_at_trx_commit = 1 的作用);
(2)commit 阶段:把 XID 写入到 binlog,然后将 binlog 持久化到磁盘(sync_binlog = 1 的作用),接着调用引擎的提交事务接口,将 redo log 状态设置为 commit,此时该状态并不需要持久化到磁盘,只需要 write 到文件系统的 page cache 中就够了,因为只要 binlog 写磁盘成功,就算 redo log 的状态还是 prepare 也没有关系,一样会被认为事务已经执行成功;
18、分析两阶段提交下异常重启不会导致主从数据不一致。
在 MySQL 重启后会按顺序扫描 redo log 文件,碰到处于 prepare 状态的 redo log,就拿着 redo log 中的 XID 去 binlog 查看是否存在此 XID:
(1)如果 binlog 中没有当前内部 XA 事务的 XID,说明 redolog 完成刷盘,但是 binlog 还没有刷盘,则回滚事务。
(2)如果 binlog 中有当前内部 XA 事务的 XID,说明 redolog 和 binlog 都已经完成了刷盘,则提交事务。
对于处于 prepare 阶段的 redo log,即可以提交事务,也可以回滚事务,这取决于是否能在 binlog 中查找到与 redo log 相同的 XID,如果有就提交事务,如果没有就回滚事务。这样就可以保证 redo log 和 binlog 这两份日志的一致性了。
所以说,两阶段提交是以 binlog 写成功为事务提交成功的标识,因为 binlog 写成功了,就意味着能在 binlog 中查找到与 redo log 相同的 XID。
19、事务没提交的时候,redo log 会被持久化到磁盘吗?这样会不会有问题?
事务执行中间过程的 redo log 也是直接写在 redo log buffer 中的,这些缓存在 redo log buffer 里的 redo log 也会被「后台线程」每隔一秒一起持久化到磁盘。也就是说,事务没提交的时候,redo log 也是可能被持久化到磁盘的。
如果 mysql 崩溃了,还没提交事务的 redo log 已经被持久化磁盘了,mysql 重启后,数据不就不一致了?
这种情况 mysql 重启会进行回滚操作,因为事务没提交的时候,binlog 是还没持久化到磁盘的。所以, redo log 可以在事务没提交之前持久化到磁盘,但是 binlog 必须在事务提交之后,才可以持久化到磁盘。
20、两阶段提交存在什么问题?
两阶段提交虽然保证了两个日志文件的数据一致性,但是性能很差,主要有两个方面的影响:
(1)磁盘 I/O 次数高:对于“双1”配置,每个事务提交都会进行两次 fsync(刷盘),一次是 redo log 刷盘,另一次是 binlog 刷盘。
binlog 和 redo log 在内存中都对应的缓存空间,binlog 会缓存在 binlog cache,redo log 会缓存在 redo log buffer,它们持久化到磁盘的时机分别由下面这两个参数控制。一般我们为了避免日志丢失的风险,会将这两个参数设置为 1:
01.当 sync_binlog = 1 的时候,表示每次提交事务都会将 binlog cache 里的 binlog 直接持久到磁盘;
02.当 innodb_flush_log_at_trx_commit = 1 时,表示每次事务提交时,都将缓存在 redo log buffer 里的 redo log 直接持久化到磁盘;
(2)锁竞争激烈:两阶段提交虽然能够保证「单事务」两个日志的内容一致,但在「多事务」的情况下,却不能保证两者的提交顺序一致,因此,在两阶段提交的流程基础上,还需要加一个锁来保证提交的原子性,从而保证多事务的情况下,两个日志的提交顺序一致。
在早期的 MySQL 版本中,通过使用 prepare_commit_mutex 锁来保证事务提交的顺序,在一个事务获取到锁时才能进入 prepare 阶段,一直到 commit 阶段结束才能释放锁,下个事务才可以继续进行 prepare 操作。
通过加锁虽然完美地解决了顺序一致性的问题,但在并发量较大的时候,就会导致对锁的争用,性能不佳。
21、怎么解决两阶段提交的问题?
MySQL 引入了 binlog 组提交(group commit)机制,当有多个事务提交的时候,会将多个 binlog 刷盘操作合并成一个,从而减少磁盘 I/O 的次数,如果说 10 个事务依次排队刷盘的时间成本是 10,那么将这 10 个事务一次性一起刷盘的时间成本则近似于 1。
22、详细说说两阶段提交的流程。
(1)flush 阶段
第一个事务会成为 flush 阶段的 Leader,此时后面到来的事务都是 Follower
获取队列中的事务组,由事务组的 Leader 对 rodo log 做一次 write + fsync,即一次将同组事务的 redolog 刷盘:
完成了 prepare 阶段后,将这一组事务执行过程中产生的 binlog 写入 binlog 文件(调用 write,不会调用 fsync,所以不会刷盘,binlog 缓存在操作系统的文件系统中)。
(2)sync 阶段
一组事务的 binlog 写入到 binlog 文件后,并不会马上执行刷盘的操作,而是会等待一段时间,这个等待的时长由 Binlog_group_commit_sync_delay 参数控制,目的是为了组合更多事务的 binlog,然后再一起刷盘
在等待的过程中,如果事务的数量提前达到了 Binlog_group_commit_sync_no_delay_count 参数设置的值,就不用继续等待了,就马上将 binlog 刷盘
binlog_group_commit_sync_delay= N,表示在等待 N 微妙后,直接调用 fsync,将处于文件系统中 page cache 中的 binlog 刷盘,也就是将「 binlog 文件」持久化到磁盘。
binlog_group_commit_sync_no_delay_count = N,表示如果队列中的事务数达到 N 个,就忽视binlog_group_commit_sync_delay 的设置,直接调用 fsync,将处于文件系统中 page cache 中的 binlog 刷盘。
(3)commit 阶段
调用引擎的提交事务接口,将 redo log 状态设置为 commit。
23、组提交发现MySQL的IO还是很高,有什么办法优化?
现在我们知道事务在提交的时候,需要将 binlog 和 redo log 持久化到磁盘,那么如果出现 MySQL 磁盘 I/O 很高的现象,我们可以通过控制以下参数,来 “延迟” binlog 和 redo log 刷盘的时机,从而降低磁盘 I/O 的频率:
(1)设置组提交的两个参数: binlog_group_commit_sync_delay 和 binlog_group_commit_sync_no_delay_count 参数,延迟 binlog 刷盘的时机,从而减少 binlog 的刷盘次数。
这个方法是基于“额外的故意等待”来实现的,因此可能会增加语句的响应时间,但即使 MySQL 进程中途挂了,也没有丢失数据的风险,因为 binlog 早被写入到 page cache 了,只要系统没有宕机,缓存在 page cache 里的 binlog 就会被持久化到磁盘。
(2)将 sync_binlog 设置为大于 1 的值(比较常见是 100~1000),表示每次提交事务都 write,但累积 N 个事务后才 fsync,相当于延迟了 binlog 刷盘的时机。
这样做的风险是,主机掉电时会丢 N 个事务的 binlog 日志。
(3)将 innodb_flush_log_at_trx_commit 设置为 2。表示每次事务提交时,都只是缓存在 redo log buffer 里的 redo log 写到 redo log 文件
注意写入到「 redo log 文件」并不意味着写入到了磁盘,因为操作系统的文件系统中有个 Page Cache,专门用来缓存文件数据的,所以写入「 redo log文件」意味着写入到了操作系统的文件缓存,然后交由操作系统控制持久化到磁盘的时机。但是这样做的风险是,主机掉电的时候会丢数据。