基于R语言和iris数据集实现随机森林模型及测试应用

基于R语言和iris数据集实现随机森林模型及测试应用
测试应用R代码

#加载随机森林模型库
> library("randomForest")
#加载iris数据集
> data(iris)
> head(iris)

# 设置训练数据和标签  
t_data <- iris[, -5]  
t_labels <- iris[, 5]  
  
# 训练随机森林模型  
rf_model <- randomForest(t_data, t_labels, ntree=100)  
  
# 输出模型摘要  
print(rf_model)  
  
# 使用模型进行预测  
rf_predictions <- predict(rf_model, t_data)  
  
# 查看预测结果  
print(rf_predictions)  
  
# 评估模型性能(这里使用混淆矩阵)  
table(t_labels, rf_predictions)

# 提取特征重要性  
importance <- importance(rf_model)  
  
# 将特征重要性转换为数据框,以便使用ggplot2  
importance_df <- as.data.frame(importance)  

显示随机森林模型中的要素的重要性数据列表
importance_df 内容如下所示:
在这里插入图片描述
显示每个特征在随机森林模型中的重要性。
MeanDecreaseGini是特征重要性的度量,
表示当该特征的随机噪声被添加到模型中时,模型精度的平均下降程度。
其中Petal.Length重要性参数值最大为43.56422

其随机森林模型参数如下所示:

> print(rf_model)

Call:
 randomForest(x = t_data, y = t_labels, ntree = 100) 
               Type of random forest: classification
                     Number of trees: 100
No. of variables tried at each split: 2

        OOB estimate of  error rate: 6%
Confusion matrix:
           setosa versicolor virginica class.error
setosa         50          0         0        0.00
versicolor      0         46         4        0.08
virginica       0          5        45        0.10

预测代码
准备一条测试记录进行预测
1 10 6.5 2.8 0.4

准备一条测试记录
t_test<-t_data[1,]
> print(t_test) 
  Sepal.Length Sepal.Width Petal.Length Petal.Width
1          5.1         3.5          1.4         0.2
> t_test<-t_data[1,]+t_data[2,]
> print(t_test) 
  Sepal.Length Sepal.Width Petal.Length Petal.Width
1           10         6.5          2.8         0.4
#开始预测
> rf_predictions <- predict(rf_model, t_test) 
#查看预测结果
> print(rf_predictions)
     1 
setosa 
Levels: setosa versicolor virginica
> 

预测结果
预测结果值为:setosa
1 10 6.5 2.8 0.4 setosa

iris数据集简介:
包含了150条关于鸢尾花(Iris)的观测记录

Iris数据集是一个常用的分类实验数据集,
由英国统计学家和生物学家Ronald Fisher在1936年收集整理。
它包含了150条关于鸢尾花(Iris)的观测记录,
每条记录包含了4个特征:
花萼长度(Sepal.Length)、
花萼宽度(Sepal.Width)、
花瓣长度(Petal.Length)
和花瓣宽度(Petal.Width)。
这些特征都以浮点数表示,并且都被归一化到0-1的范围内。

根据这些特征,Iris数据集将鸢尾花分为三类:山鸢尾(Setosa)、变色鸢尾(Versicolour)和维吉尼亚鸢尾(Virginica)。
因此,可以通过这4个特征预测鸢尾花卉属于三个种类中的哪一类。

Iris数据集在机器学习领域中非常受欢迎,常被用作分类、聚类等算法的研究和实验。在数据集中,有两个属性:iris.data和iris.target。其中,iris.data是一个矩阵,每一列代表了萼片或花瓣的长宽,一共有4列,每一列代表某个被测量的鸢尾植物,一共有150条记录。而iris.target是一个数组,存储了iris.data中150条记录每条记录属于哪一类鸢尾植物,所以数组的长度是150,数组元素的值因为共有3类鸢尾植物,所以不同值只有3个,分别是0、1、2。

> print(iris)
序号   花萼长度    花萼宽度       花瓣长度    花瓣宽度      鸢尾花类型名称
    Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
1            5.1         3.5          1.4         0.2     setosa
2            4.9         3.0          1.4         0.2     setosa
3            4.7         3.2          1.3         0.2     setosa
4            4.6         3.1          1.5         0.2     setosa
5            5.0         3.6          1.4         0.2     setosa
6            5.4         3.9          1.7         0.4     setosa
7            4.6         3.4          1.4         0.3     setosa
8            5.0         3.4          1.5         0.2     setosa
9            4.4         2.9          1.4         0.2     setosa
10           4.9         3.1          1.5         0.1     setosa
11           5.4         3.7          1.5         0.2     setosa
12           4.8         3.4          1.6         0.2     setosa
13           4.8         3.0          1.4         0.1     setosa
14           4.3         3.0          1.1         0.1     setosa
15           5.8         4.0          1.2         0.2     setosa
16           5.7         4.4          1.5         0.4     setosa
17           5.4         3.9          1.3         0.4     setosa
18           5.1         3.5          1.4         0.3     setosa
19           5.7         3.8          1.7         0.3     setosa
20           5.1         3.8          1.5         0.3     setosa
21           5.4         3.4          1.7         0.2     setosa
22           5.1         3.7          1.5         0.4     setosa
23           4.6         3.6          1.0         0.2     setosa
24           5.1         3.3          1.7         0.5     setosa
25           4.8         3.4          1.9         0.2     setosa
26           5.0         3.0          1.6         0.2     setosa
27           5.0         3.4          1.6         0.4     setosa
28           5.2         3.5          1.5         0.2     setosa
29           5.2         3.4          1.4         0.2     setosa
30           4.7         3.2          1.6         0.2     setosa
31           4.8         3.1          1.6         0.2     setosa
32           5.4         3.4          1.5         0.4     setosa
33           5.2         4.1          1.5         0.1     setosa
34           5.5         4.2          1.4         0.2     setosa
35           4.9         3.1          1.5         0.2     setosa
36           5.0         3.2          1.2         0.2     setosa
37           5.5         3.5          1.3         0.2     setosa
38           4.9         3.6          1.4         0.1     setosa
39           4.4         3.0          1.3         0.2     setosa
40           5.1         3.4          1.5         0.2     setosa
41           5.0         3.5          1.3         0.3     setosa
42           4.5         2.3          1.3         0.3     setosa
43           4.4         3.2          1.3         0.2     setosa
44           5.0         3.5          1.6         0.6     setosa
45           5.1         3.8          1.9         0.4     setosa
46           4.8         3.0          1.4         0.3     setosa
47           5.1         3.8          1.6         0.2     setosa
48           4.6         3.2          1.4         0.2     setosa
49           5.3         3.7          1.5         0.2     setosa
50           5.0         3.3          1.4         0.2     setosa
51           7.0         3.2          4.7         1.4 versicolor
52           6.4         3.2          4.5         1.5 versicolor
53           6.9         3.1          4.9         1.5 versicolor
54           5.5         2.3          4.0         1.3 versicolor
55           6.5         2.8          4.6         1.5 versicolor
56           5.7         2.8          4.5         1.3 versicolor
57           6.3         3.3          4.7         1.6 versicolor
58           4.9         2.4          3.3         1.0 versicolor
59           6.6         2.9          4.6         1.3 versicolor
60           5.2         2.7          3.9         1.4 versicolor
61           5.0         2.0          3.5         1.0 versicolor
62           5.9         3.0          4.2         1.5 versicolor
63           6.0         2.2          4.0         1.0 versicolor
64           6.1         2.9          4.7         1.4 versicolor
65           5.6         2.9          3.6         1.3 versicolor
66           6.7         3.1          4.4         1.4 versicolor
67           5.6         3.0          4.5         1.5 versicolor
68           5.8         2.7          4.1         1.0 versicolor
69           6.2         2.2          4.5         1.5 versicolor
70           5.6         2.5          3.9         1.1 versicolor
71           5.9         3.2          4.8         1.8 versicolor
72           6.1         2.8          4.0         1.3 versicolor
73           6.3         2.5          4.9         1.5 versicolor
74           6.1         2.8          4.7         1.2 versicolor
75           6.4         2.9          4.3         1.3 versicolor
76           6.6         3.0          4.4         1.4 versicolor
77           6.8         2.8          4.8         1.4 versicolor
78           6.7         3.0          5.0         1.7 versicolor
79           6.0         2.9          4.5         1.5 versicolor
80           5.7         2.6          3.5         1.0 versicolor
81           5.5         2.4          3.8         1.1 versicolor
82           5.5         2.4          3.7         1.0 versicolor
83           5.8         2.7          3.9         1.2 versicolor
84           6.0         2.7          5.1         1.6 versicolor
85           5.4         3.0          4.5         1.5 versicolor
86           6.0         3.4          4.5         1.6 versicolor
87           6.7         3.1          4.7         1.5 versicolor
88           6.3         2.3          4.4         1.3 versicolor
89           5.6         3.0          4.1         1.3 versicolor
90           5.5         2.5          4.0         1.3 versicolor
91           5.5         2.6          4.4         1.2 versicolor
92           6.1         3.0          4.6         1.4 versicolor
93           5.8         2.6          4.0         1.2 versicolor
94           5.0         2.3          3.3         1.0 versicolor
95           5.6         2.7          4.2         1.3 versicolor
96           5.7         3.0          4.2         1.2 versicolor
97           5.7         2.9          4.2         1.3 versicolor
98           6.2         2.9          4.3         1.3 versicolor
99           5.1         2.5          3.0         1.1 versicolor
100          5.7         2.8          4.1         1.3 versicolor
101          6.3         3.3          6.0         2.5  virginica
102          5.8         2.7          5.1         1.9  virginica
103          7.1         3.0          5.9         2.1  virginica
104          6.3         2.9          5.6         1.8  virginica
105          6.5         3.0          5.8         2.2  virginica
106          7.6         3.0          6.6         2.1  virginica
107          4.9         2.5          4.5         1.7  virginica
108          7.3         2.9          6.3         1.8  virginica
109          6.7         2.5          5.8         1.8  virginica
110          7.2         3.6          6.1         2.5  virginica
111          6.5         3.2          5.1         2.0  virginica
112          6.4         2.7          5.3         1.9  virginica
113          6.8         3.0          5.5         2.1  virginica
114          5.7         2.5          5.0         2.0  virginica
115          5.8         2.8          5.1         2.4  virginica
116          6.4         3.2          5.3         2.3  virginica
117          6.5         3.0          5.5         1.8  virginica
118          7.7         3.8          6.7         2.2  virginica
119          7.7         2.6          6.9         2.3  virginica
120          6.0         2.2          5.0         1.5  virginica
121          6.9         3.2          5.7         2.3  virginica
122          5.6         2.8          4.9         2.0  virginica
123          7.7         2.8          6.7         2.0  virginica
124          6.3         2.7          4.9         1.8  virginica
125          6.7         3.3          5.7         2.1  virginica
126          7.2         3.2          6.0         1.8  virginica
127          6.2         2.8          4.8         1.8  virginica
128          6.1         3.0          4.9         1.8  virginica
129          6.4         2.8          5.6         2.1  virginica
130          7.2         3.0          5.8         1.6  virginica
131          7.4         2.8          6.1         1.9  virginica
132          7.9         3.8          6.4         2.0  virginica
133          6.4         2.8          5.6         2.2  virginica
134          6.3         2.8          5.1         1.5  virginica
135          6.1         2.6          5.6         1.4  virginica
136          7.7         3.0          6.1         2.3  virginica
137          6.3         3.4          5.6         2.4  virginica
138          6.4         3.1          5.5         1.8  virginica
139          6.0         3.0          4.8         1.8  virginica
140          6.9         3.1          5.4         2.1  virginica
141          6.7         3.1          5.6         2.4  virginica
142          6.9         3.1          5.1         2.3  virginica
143          5.8         2.7          5.1         1.9  virginica
144          6.8         3.2          5.9         2.3  virginica
145          6.7         3.3          5.7         2.5  virginica
146          6.7         3.0          5.2         2.3  virginica
147          6.3         2.5          5.0         1.9  virginica
148          6.5         3.0          5.2         2.0  virginica
149          6.2         3.4          5.4         2.3  virginica
150          5.9         3.0          5.1         1.8  virginica

本blog地址:https://blog.csdn.net/hsg77

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/430925.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Redis】Redis入门

文章目录 一、Redis简介二、Redis的特性三、Redis的使用场景四、Redis可以做什么五、Redis不可以做什么六、CentOS7安装Redis5七、Redis通用命令 一、Redis简介 Redis 是⼀种基于 键值对&#xff08;key-value&#xff09; 的NoSQL数据库&#xff0c;与很多键值对数据库不同的…

AI大模型或将改变世界格局,你准备好了吗?

AI大模型的出现将极大地改变世界格局。这一技术的发展已经迅猛&#xff0c;正在渗透到各个领域&#xff0c;成为推动社会进步的重要力量。AI大模型可以帮助人们解决各种难题&#xff0c;提高生产效率&#xff0c;改善生活质量。但与此同时&#xff0c;也存在着一些隐忧和挑战。…

(2024,LayerDiffusion,图层生成与混合,SD,LoRA)使用潜在透明度的透明图像层扩散

Transparent Image Layer Diffusion using Latent Transparency 公和众和号&#xff1a;EDPJ&#xff08;进 Q 交流群&#xff1a;922230617 或加 VX&#xff1a;CV_EDPJ 进 V 交流群&#xff09; 目录 0. 摘要 2. 相关工作 2.1 将图像隐藏在扰动内 2.2 扩散概率模型和潜在…

功能强大使用简单的截图/贴图工具,PixPin

一、下载链接 PixPin 截图/贴图/长截图/文字识别/标注 | PixPin 截图/贴图/长截图/文字识别/标注 (pixpinapp.com) 二、功能 截图/贴图/长截图/文字识别/标注 三、安装教程 根据提示安装即可&#xff1a; 四、快捷键 1.软件自带快捷键&#xff08;右击PixPin查看 &#xff09…

kuangbin专题——简单搜索

1.棋盘问题&#xff08;dfs&#xff09; 思路 1.dfs 参数里枚举每一行&#xff0c;然后在里面弄两个分支&#xff0c;选或者不选&#xff0c;选的话就枚举这一行的所有元素 2.注意最后一行要先判断&#xff0c;再返回 #include<iostream> using namespace std; const i…

uniapp制作--进步器的选择

介绍&#xff1a; 进步器的选择,一般用于商城购物选择物品数量的场景 注意&#xff1a;该输入框只能输入大于或等于0的整数 效果展示&#xff1a; 代码展示&#xff1a; 以下是一个简单的购物车页面示例&#xff0c;包括选择商品和显示数量的功能&#xff1a; 在这个示例中…

docker 安装 Jenkins

一、安装 jenkins 中文文档&#xff1a; https://www.jenkins.io/zh/doc/book/installing/#docker jenkins 提供了详细的安装方式和步骤&#xff0c;这里咱们使用 docker 进行安装 根据文档上的命令&#xff0c;自己修改如下&#xff1a; docker run \ -u root \ --name jenki…

三八妇女节送礼推荐:送给她的五款超值好物,绝不踩雷!

随着三八妇女节的临近&#xff0c;我们开始思考如何向身边的女性表达我们的尊重和关爱。这个特殊的节日不仅是对女性贡献的认可&#xff0c;更是展示我们关怀与感激之情的绝佳时机。在众多礼物中&#xff0c;如何挑选一份既能体现心意又实用的礼品呢&#xff1f;为了让您在这个…

Win UI3开发笔记(八)多语言切换

要实现的目标&#xff1a;checkbox选定什么语言&#xff0c;当前应用程序的文字就是这一门语言。 步骤如下&#xff1a; 参考现有的一个程序的代码&#xff0c;先定义资源文件。 如果只有一个按钮、一个文本、一个列表框的话 新建String 在这个文件夹下定义en-us&#xff0c;z…

智能物联时代下RFID技术在汽车零部件智能制造中的引领作用

RFID&#xff08;Radio Frequency Identification&#xff0c;射频识别&#xff09;技术在汽车零部件加工中有广泛的应用&#xff0c;其工作原理是通过无线电频率进行自动识别。在汽车零部件加工中&#xff0c;RFID技术可以发挥重要作用&#xff0c;提高生产效率、降低成本和减…

LVS集群(Linux Virtual server)相关介绍及LVS的NAT模式部署

群集的含义 ●Cluster&#xff0c;集群、群集由多台主机构成&#xff0c;但对外只表现为一个整体&#xff0c;只提供访问入口(域名或IP地址)&#xff0c;相当于一台大型计算机 问题&#xff1a; 互联网应用中&#xff0c;随着站点对硬件性能、响应速度、服务稳定性、数据可靠…

网络工程师笔记7

路由器需要知道下一跳和出接口才能把数据转发出去 各个协议的优先级 直连&#xff1a;0 OSPF&#xff1a;10 ISIS&#xff1a;15 静态&#xff1a;60 RIP :100 静态路由 ip route-static <目的ip地址> 掩码 下一跳地址 例…

哈希的简单介绍

unordered系列关联式容器 在C98中&#xff0c;STL提供了底层为红黑树结构的一系列关联式容器&#xff0c;在查询时效率可达到 l o g 2 N log_2 N log2​N&#xff0c;即最差情况下需要比较红黑树的高度次&#xff0c;当树中的节点非常多时&#xff0c;查询效率也不理想。最好的…

开展“3·15”金融消费者权益保护教育宣传活动怎样联系媒体投稿?

在组织“315”金融消费者权益保护教育宣传活动时,传统的方式通常是银行、金融机构或其他主办单位主动联系各类媒体,包括但不限于电视台、广播电台、报纸、杂志、新闻网站、金融专业媒体、社交媒体平台等,通过邮件、电话、传真等方式提供活动新闻稿、宣传材料、现场照片等素材,请…

列车调度——典型的验证栈的出栈合不合法的问题,值得一看

题目描述 有n列火车按照1,2,3...n的顺序排列&#xff0c;现所有的火车需要掉头&#xff0c;所以需要火车先驶入一个调度站&#xff0c;再开出来。 由于只有一根铁轨&#xff0c;所以要么最前面的一辆火车进去调度站&#xff0c;要么调度栈内最上面一辆火车开出调度栈。 现给…

图书馆管理系统(1)

图书馆管理系统的框架图 图书馆管理系统的基本的功能代码&#xff0c;就是围绕上面这幅图的内容来写&#xff0c; 其中大一点的模块相当于主菜单&#xff0c;小一点的模块相当于子菜单&#xff0c;那就有了主菜单和子菜单如何响应&#xff08;主到子&#xff0c;子回主&#…

使用Weaviate向量数据库:从Embeddings到Applications (Multilingual Search和RAG)

Vector Databases: from Embeddings to Applications 课程地址&#xff1a;https://www.deeplearning.ai/short-courses/vector-databases-embeddings-applications/ 下面是这门课程的笔记。 使用Weaviate向量数据库&#xff1a;从Embeddings到应用&#xff0c;比如Multilin…

【GIS技术】GIS在地质灾害易损性评价、危险性评估与灾后重建中的实践技术应用

地质灾害是指全球地壳自然地质演化过程中&#xff0c;由于地球内动力、外动力或者人为地质动力作用下导致的自然地质和人类的自然灾害突发事件。由于降水、地震等自然作用下&#xff0c;地质灾害在世界范围内频繁发生。我国除滑坡灾害外&#xff0c;还包括崩塌、泥石流、地面沉…

[数据结构]队列

1.队列的概念及结构 队列&#xff1a;只允许在一端进行插入数据操作&#xff0c;在另一端进行删除数据操作的特殊线性表&#xff0c;队列具有先进先出 FIFO(First In First Out) 入队列&#xff1a;进行插入操作的一端称为队尾 出队列&#xff1a;进行删除操作的一端称为队头 2…

2024/3/5打卡线性DP--最长上升子序列**

题目&#xff1a; 给定一个长度为 N 的数列&#xff0c;求数值严格单调递增的子序列的长度最长是多少。 输入格式 第一行包含整数 N。 第二行包含 N 个整数&#xff0c;表示完整序列。 输出格式 输出一个整数&#xff0c;表示最大长度。 数据范围 1≤N≤1000&#xff0c; −10^…