【C语言基础】:深入理解指针(二)

文章目录

    • 深入理解指针
      • 一、指针运算
        • 1. 指针 +- 整数
        • 2. 指针 - 指针
        • 3. 指针的关系运算
      • 二、野指针
        • 1. 野指针成因
        • 2. 如何避免野指针
      • 三、assert断言
      • 四、指针的使用和传址调用
        • 4.1 strlen的模拟实现
        • 4.2 传值调用和传址调用
      • 五、指针与数组
        • 5.1 数组名的理解
        • 5.2 指针访问数组
        • 5.3 一维数组传参的本质

深入理解指针

上期回顾:【C语言基础】:深入理解指针(一)

一、指针运算

指针的基本运算有三种,分别是:
1. 指针 ± 整数
2. 指针 - 指针
3. 指针的关系运算

1. 指针 ± 整数

在C语言中,我们知道数组在内存中是连续存放的,所以我们只要知道了数组第一个元素的地址,就可以顺藤摸瓜找到后面元素的地址。

int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };

在这里插入图片描述

#include<stdio.h>
// 指针 +- 整数
int main()
{
	int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
	int* p = &arr[0];
	int sz = sizeof(arr) / sizeof(arr[0]); // 计算元素个数
	int i = 0;
	for (i = 0; i < sz; i++)
	{
		printf("%d ", *(p + i));  // 指针 +- 整数
	}
	return 0;
}

在这里插入图片描述
上述示例中,通过 *(p + i) 的方式可以实现指针向前移动 i 个位置,并访问对应位置的数组元素。

2. 指针 - 指针

在C语言中,不止整数之间可以进行运算,其实指针与指针之间也可以进行运算,指针与指针之间可以进行减法运算,两个指针相减得到的是一个整数,表示它们之间相隔元素的个数

#include<stdio.h>
// 指针 - 指针
// 模拟strlen库函数
my_strlen(char *s)
{
	char* p = s;
	while (*p != '\0')
		p++;
	return p - s;
}

int main()
{
	printf("%d\n", my_strlen("abc"));
	return 0;
}

在这里插入图片描述

3. 指针的关系运算
#include<stdio.h>
int main()
{
	int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
	int* p = &arr[0];
	int sz = sizeof(arr) / sizeof(arr[0]);  // 计算数组之间的元素个数
	int i = 0;
	while (p < arr + sz)  // 指针的大小比较
	{
		printf("%d ", *p);
		p++;
	}
	return 0;
}

在这里插入图片描述
在上述示例中,通过指针 p 和数组大小 sz 的比较,保证了在不越界的情况下遍历整个数组。

二、野指针

野指针就是指指针指向的位置是不可知的(随机的、不正确的、没有明确限制的)

1. 野指针成因

指针未初始化

局部变量未初始化,默认随机值

int main()
{
	int* p;  // 局部变量未初始化,默认随机值
	*p = 30;
	return 0;
}

指针越界访问

int main()
{
	int arr[10] = { 0 };
	int* p = &arr[0];
	int i = 0;
	for (i = 0; i <= 11; i++)
	{
		// 当指针指向的范围超出数组arr的范围时,p就是野指针
		*(p++) = i;
	}
	return 0;
}

在这里插入图片描述
可以看到,调试运行之后程序直接就抛出异常了,所以为了安全最好要避免野指针的出现。

指针指向的空间释放

int* test()
{
	int n = 100;
	return &n;
}

int main()
{
	int* p = test();
	printf("%d\n", *p);
	return 0;
}

在函数 test() 中,指针返回指向的是一个局部变量 n 的地址,在函数执行完毕后,n 的内存空间会被释放掉,导致返回的指针指向的内存区域已经无效。

2. 如何避免野指针

指针初始化

如果明确知道指针指向哪里就直接赋值地址,如果不知道指针应该指向哪里,可以给指针赋值NULL
NULL 是C语言中定义的一个标识符常量,值是0,0也是地址,这个地址是无法使用的,读写该地址会报错。

int main()
{
	int num = 10;
	int* p1 = &num;
	int* p2 = NULL;
	*p1 = 20;
	// *p2 = 20;  // err
	printf("%d\n", *p1);
	// printf("%d\n", *p2);
	return 0;
}

在这里插入图片描述
可以看到,若是我们直接去访问0这个地址,程序会直接给我们报错。

小心指针越界

一个程序向内存申请了哪些空间,通过指针也就只能访问哪些空间,不能超出范围访问,超出了就是越界访问。

int main()
{
	int arr[10] = { 0 };
	int* p = &arr[0];
	int i = 0;
	for (i = 0; i < 10; i++)
	{
		*(p++) = i;
	}
	return 0;
}

指针变量不再使用时,及时置NULL,指针使用之前检查有效性

当指针变量指向⼀块区域的时候,我们可以通过指针访问该区域,后期不再使用这个指针访问空间的
时候,我们可以把该指针置为NULL。因为约定俗成的⼀个规则就是:只要是NULL指针就不去访问
同时使用指针之前可以判断指针是否为NULL。

int main()
{
 int arr[10] = {1,2,3,4,5,67,7,8,9,10};
 int *p = &arr[0];
 for(i=0; i<10; i++)
 {
 *(p++) = i;
 }
 //此时p已经越界了,可以把p置为NULL
 p = NULL;
 //下次使⽤的时候,判断p不为NULL的时候再使⽤
 //...
 p = &arr[0];//重新让p获得地址
 if(p != NULL) //判断
 {
 //...
 }
 return 0;
}

避免返回局部变量的地址

三、assert断言

assert.h 头文件定义了宏 assert() ,⽤于在运行时确保程序符合指定条件,如果不符合,就报
错终止运行。这个宏常常被称为“断言”。

assret(p != NULL)

上面代码在程序运行到这一行语句时,验证变量 p 是否等于 NULL 。如果确实不等于 NULL ,程序
继续运行,否则就会终止运行,并且给出报错信息提示。

assert() 宏接受⼀个表达式作为参数。如果该表达式为真(返回值非零), assert() 不会产生
任何作用,程序继续运行。如果该表达式为假(返回值为零), assert() 就会报错,在标准错误
流 stderr 中写入一条错误信息,显示没有通过的表达式,以及包含这个表达式的⽂件名和行号。

assert() 的使用对程序员是非常友好的,使用 assert() 有几个好处:它不仅能自动标识文件和
出问题的行号,还有⼀种无需更改代码就能开启或关闭 assert() 的机制。如果已经确认程序没有问
题,不需要再做断言,就在 #include <assert.h> 语句的前⾯,定义⼀个宏 NDEBUG

#define NDEBUG
#include<assert.h>

然后,重新编译程序,编译器就会禁用文件中所有的 assert() 语句。如果程序又出现问题,可以移
除这条 #define NDEBUG 指令(或者把它注释掉),再次编译,这样就重新启用了 assert()
句。

assert() 的缺点:因为引入了额外的检查,增加了程序的运行时间。
⼀般我们可以在 Debug 中使用,在 Release 版本中选择禁用 assert 就行,在 VS 这样的集成开
发环境中,在 Release 版本中,直接就是优化掉了。这样在debug版本写有利于程序员排查问题,
在 Release 版本不影响用户使用时程序的效率。

四、指针的使用和传址调用

4.1 strlen的模拟实现

库函数strlen的功能是求字符串长度,统计的是字符串中 \0 之前的字符的个数。
函数原型如下:

size_t strlen ( const char * str );

参数str接收⼀个字符串的起始地址,然后开始统计字符串中 \0 之前的字符个数,最终返回⻓度。
如果要模拟实现只要从起始地址开始向后逐个字符的遍历,只要不是 \0 字符,计数器就+1,这样直
到 \0 就停止。

#include<stdio.h>
#include<assert.h>
int my_strlen(const char* str)
{
	int count = 0;
	assert(str);
	while (*str)
	{
		count++;
		str++;
	}
	return count;
}

int main()
{
	int len = my_strlen("abcdef");
	printf("%d\n", len);
	return 0;
}

在这里插入图片描述

4.2 传值调用和传址调用

【示例】:写⼀个函数,交换两个整型变量的值

错误示范

#include<stdio.h>
void Swap1(int x, int y)
{
	int tmp = 0;
	tmp = x;
	x = y;
	y = tmp;
}

int main()
{
	int a = 0;
	int b = 0;
	scanf("%d %d", &a, &b);
	prinf("交换前:%d %d\n", a, b);
	Swap1(a, b);
	printf("交换后:%d %d\n", a, b);
	return 0;
}

在这里插入图片描述
可以发现,代码运行后未发生交换,这是为什么呢?
在这里插入图片描述
经过调试后我们发现,main函数内部创建的a和b确实传到了Swap函数里的x和y中,但我们查看a和b的地址与Swap函数里的x和y的地址进行对比时,我们就可以发现问题了,它们的地址不一样,这就相当于Swap函数里的x和y是一个独立的空间,在Swap函数内部进行了交换,但却无法返回到main函数中,导致a和b没有实现交换,Swap1函数在使用的时候,是把变量本身直接传递给了函数,这种调用函数的方式我们之前在函数的时候就知道了,这种叫传值调用

结论实参传递给形参的时候,形参会单独创建⼀份临时空间来接收实参,对形参的修改不影响实参

解决办法:我们现在要解决的就是当调用Swap函数的时候,Swap函数内部操作的就是main函数中的a和b,直接 将a和b的值交换了。那么就可以使用指针了,在main函数中将a和b的地址传递给Swap函数,Swap函数里边通过地址间接的操作main函数中的a和b,并达到交换的效果就好了。

#include<stdio.h>
void Swap2(int* px, int* py)
{
	int tmp = 0;
	tmp = *px;
	*px = *py;
	*py = tmp;
}

int main()
{
	int a = 0;
	int b = 0;
	scanf("%d %d", &a, &b);
	printf("交换前:%d %d\n", a, b);
	Swap2(&a, &b);
	printf("交换后:%d %d\n", a, b);
	return 0;
}

在这里插入图片描述
我们可以看到实现成Swap2的方式,顺利完成了任务,这⾥调用Swap2函数的时候是将变量的地址传
递给了函数,这种函数调用方式叫:传址调用

传址调用,可以让函数和主调函数之间建立真正的联系,在函数内部可以修改主调函数中的变量;所
以未来函数中只是需要主调函数中的变量值来实现计算,就可以采⽤传值调用。如果函数内部要修改
主调函数中的变量的值,就需要传址调用

五、指针与数组

5.1 数组名的理解

在C语言中,数组名是数组首元素的地址,但是经过实验会发现有两个例外
一个就是sizeof(数组名),sizeof中单独放数组名,这里的数组名表示整个数组,计算的是整个数组的大小, 单位是字节。
另一个就是**&数组名**,这里的数组名表示整个数组,取出的是整个数组的地址(整个数组的地址和数组首元素 的地址是有区别的)
除此之外,任何地方使用数组名,数组名都表示首元素的地址

下面我们看个有趣的代码:

#include<stdio.h>
int main()
{
	int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
	printf("&arr[0]   = %p\n", &arr[0]);
	printf("arr       = %p\n", arr);
	printf("&arr      = %p\n", &arr);
	return 0;
}

在这里插入图片描述
我们可以看到,三种打印结果都一模一样,那么,它们的区别在哪里呢?
别急,我们将上面的代码在进行一下扩展:

#include<stdio.h>
int main()
{
	int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
	printf("&arr[0]      = %p\n", &arr[0]);
	printf("&arr[0] + 1  = %p\n ", &arr[0]);
	printf("arr          = %p\n", arr);
	printf("arr + 1      = %p\n", arr + 1);
	printf("&arr         = %p\n", &arr);
	printf("&arr + 1     = %p\n", &arr + 1);
	return 0;
}

在这里插入图片描述
我们将它们都进行加一处理后,在打印它们的地址,就可以看出差别啦。数组名加一在地址上显示增加了四个字节,而&数组名加一后却增加了四十个字节,这是为什么呢?
我们知道整型占四个字节,而数组中有十个元素,也就是说这个数组总共占四十个字节,这样我们就明白了,原来数组名加一就是增加了一个整形元素的字节,而&数组名加一则是跳过一整个数组。
到这里大家应该搞清楚数组名的意义了吧。

5.2 指针访问数组

结合前面所学的知识,我们就可以很方便的利用指针来访问数组。

#include<stdio.h>
int main()
{
	int arr[10] = { 0 };
	int sz = sizeof(arr) / sizeof(arr[0]);  // 判断数组元素个数
	int* p = arr;
	int i = 0;
	for (i = 0; i < sz; i++)  // 输入
	{
		scanf("%d", p + i);  // 写法一
		// scanf("%d", arr + i);  // 写法二
	}
	for (i = 0; i < sz; i++)  // 输出
	{
		printf("%d ", p[i]);
	}
	return 0;
}

在第18行的地方,将*(p+i)换成p[i]也是能够正常打印的,所以本质上p[i] 是等价于 *(p+i)。
同理arr[i] 应该等价于 *(arr+i),数组元素的访问在编译器处理的时候,也是转换成首元素的地址+偏移
量求出元素的地址,然后解引用来访问的。

5.3 一维数组传参的本质

我们之前都是在函数外部计算数组的元素个数,那我们可以把数组传给⼀个函数后,函数内部求数组的元素个数吗?

#include<stdio.h>
void test(int arr[])
{
	int sz2 = sizeof(arr) / sizeof(arr[0]);
	printf("sz2 = %d\n", sz2);
}

int main()
{
	int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
	int sz1 = sizeof(arr) / sizeof(arr[0]);  // 计算数组中的元素个数
	printf("sz1 = %d\n", sz1);
	test(arr);
	return 0;
}

在这里插入图片描述
通过上面的代码我们发现函数内部没有正确获取数组的元素个数。
前面我们说到:数组名是数组首元素的地址;那么在数组传参的时候,传递的是数组名,也就是说本质上数组传参传递的是数组首元素的地址

所以函数形参的部分理论上应该使用指针变量来接收首元素的地址。那么在函数内部我们写sizeof(arr) 计算的是⼀个地址的大小(单位字节)而不是数组的大小(单位字节)。正是因为函数的参数部分是本质是指针,所以在函数内部是没办法求的数组元素个数的。

#include<stdio.h>
//void test(int arr[])  // 参数写成数组形式,本质上还是指针
//{
//	printf("%d\n", sizeof(arr));
//}

void test(int* arr)  // 参数写成指针形式
{
	printf("%d\n", sizeof(arr));  // 计算⼀个指针变量的⼤⼩
}

int main()
{
	int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
	test(arr);
	return 0;
}

在这里插入图片描述
总结:⼀维数组传参,形参的部分可以写成数组的形式,也可以写成指针的形式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/429557.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

解放人力,提升品质:码垛输送机的工业应用与价值

在现代工业生产中&#xff0c;码垛输送机已成为许多企业自动化生产线上的关键设备。它不仅可以提高生产效率&#xff0c;降低人力成本&#xff0c;还能确保产品质量&#xff0c;并为企业带来许多其他方面的实际好处。 1. 提高生产效率&#xff1a; 快速码垛&#xff1a;码垛输…

1905_ARMv7-M的堆栈寄存器

1905_ARMv7-M的堆栈寄存器 全部学习汇总&#xff1a; g_arm_cores: ARM内核的学习笔记 (gitee.com) ARMv7-M实现了2种堆栈&#xff0c;分别是MSP和PSP。复位的时候默认是MSP&#xff0c;而当前是哪种可以通过CONTROL.SPSEL寄存器的bit来查看。 SP寄存器的最低2bit&#xff0c;S…

实验01-STP+链路聚合+VRRP实验

1.实验拓扑 2 实验需求 根据拓扑图配置IP地址。交换机之间通过STP防环为了防止SW2-SW3之间聚合的高效链路被STP 阻塞&#xff0c;请配置SW2 为网络中的主根&#xff0c;SW3为网络中的备份根桥。通过VRRP实现网关冗余&#xff0c;网关在SW2和SW3上&#xff0c;其中VLAN10的网关…

【go从入门到精通】go基本类型和运算符用法

大家好&#xff0c;这是我给大家准备的新的一期专栏&#xff0c;专门讲golang&#xff0c;从入门到精通各种框架和中间件&#xff0c;工具类库&#xff0c;希望对go有兴趣的同学可以订阅此专栏。 --------------------------------------------------------------------------…

Full-RNS CKKS

参考文献&#xff1a; [HS13] Halevi S, Shoup V. Design and implementation of a homomorphic-encryption library[J]. IBM Research (Manuscript), 2013, 6(12-15): 8-36.[BEHZ16] Bajard J C, Eynard J, Hasan M A, et al. A full RNS variant of FV like somewhat homomo…

【Java EE初阶二十九】Linux 系统的学习

当前写的博客系统程序,只是部署在咱们自己的电脑上,其他用户是无法直接访问的.由于 NAT 机制的存在,导致了IP 地址就被分成了 内网 IP 和 外网 IP. 云服务器,包括公司中使用专用服务器,一般都是 Linux 系统&#xff0c;这个系统的使用和 Windows 差异很大.(通过命令行来操作的系…

汽车零部件制造中的信息抽取技术:提升效率与质量的关键

一、引言 在汽车制造业中&#xff0c;零部件的生产是整个制造流程的关键一环。这些零部件&#xff0c;包括但不限于制动系统、转向系统和传动系统&#xff0c;是确保汽车安全、可靠运行的基础。为了满足现代汽车工业对效率和质量的严格要求&#xff0c;制造商们纷纷投入到高度…

b站小土堆pytorch学习记录—— P17 土堆说卷积操作

文章目录 一、前置知识什么是卷积操作 二、代码 一、前置知识 什么是卷积操作 推荐几个高赞博客&#xff1a; 卷积最容易理解的解释 卷积神经网络&#xff08;CNN&#xff09;详细介绍及其原理详解 还有pytorch官网的动态图&#xff1a; pytorch卷积 二、代码 import t…

第五套CCF信息学奥赛c++练习题 CSP-J认证初级组 中小学信奥赛入门组初赛考前模拟冲刺题(阅读程序题)

第五套中小学信息学奥赛CSP-J考前冲刺题 二、阅读程序题 (程序输入不超过数组或字符串定义的范围&#xff0c;判断题正确填√错误填X;除特殊说明外&#xff0c;判断题 1.5分&#xff0c;选择题3分&#xff0c;共计40分) 第一题 递归函数 1 #include<iostream> 2 usin…

02. Nginx入门-Nginx安装

Nginx安装 yum安装 编辑yum环境 cat > /etc/yum.repos.d/nginx.repo << EOF [nginx-stable] namenginx stable repo baseurlhttp://nginx.org/packages/centos/$releasever/$basearch/ gpgcheck1 enabled1 gpgkeyhttps://nginx.org/keys/nginx_signing.key module_…

【LeetCode每日一题】【BFS模版与例题】【二维数组】130被围绕的区域 994 腐烂的橘子

前几天写过一篇BFS比较基础版的遍历 【LeetCode每日一题】【BFS模版与例题】863.二叉树中所有距离为 K 的结点 &#xff0c;可以先看一下再看本文 用 BFS 算法遍历二维数组 遍历二维矩阵&#xff1a;二维矩阵中的一个位置看做一个节点&#xff0c;这个节点的上下左右四个位置…

gRPC入门

文章目录 1. 简介2. 安装gRPC2.1. 下载protobuf2.2. 安装grpc核心库2.3. 安装protoc的Go插件2.4. 检查 3. 入门示例4. proto文件介绍5. 服务端代码编写6. 客户端代码编写7. 认证以及安全传输 1. 简介 在 gRPC 中&#xff0c;客户端应用程序可以像本地对象一样直接调用不同机器…

Flutter中的Provider状态管理工具有哪些优势

在Flutter应用开发中&#xff0c;状态管理是一个至关重要的方面。而Provider作为一种简单、灵活且高效的状态管理工具&#xff0c;在众多Flutter开发者中备受青睐。本文将深入探讨Provider在Flutter中的优势&#xff0c;帮助读者更好地理解其价值和应用场景。 简单易用 Provi…

《数字图像处理(MATLAB版)》相关算法代码及其分析(3)

目录 1 对边界进行子采样 1.1 输入参数检查 1.2 处理重复坐标 1.3 计算边界最大范围 1.4 确定网格线数量 1.5 构建网格位置向量 1.6 计算曼哈顿距离 1.7 整理输出结果 1.8 返回结果 2 改变图像的存储类别 2.1 函数输入 2.2 数据类型转换 2.3 错误处理 2.4 返回结…

Flutter整体框架

Flutter整体框架由三部分组成&#xff1a;Framework、Engine和Embedder。 Framework Framework提供了一个用 Dart 语言编写的现代、反应式框架&#xff0c;由许多抽象的层级组成。它包括一套丰富的布局、动画、绘制、手势UI组件及配套代码&#xff0c;以及更基础的异步、文件、…

参数引入和全局变量引入实现-目标和

LCR 102. 目标和 - 力扣&#xff08;LeetCode&#xff09; 分析题意&#xff0c;画出决策树&#xff0c;其他的思路都跟前面讲过的类似&#xff1a; 全局变量引入实现&#xff1a; 全局变量的引入&#xff0c;需要手动处理回溯&#xff1b; class Solution {int ret; //…

视频拉流推流技术梳理

概况 视频的整个流程主要分为推流和拉流 摄像头场景&#xff1a; 摄像头捕捉视频画面&#xff0c;推流到服务器&#xff0c;服务器分发到CDN&#xff0c; 客户端从CDN地址拉流&#xff0c;客户端进行播放 直播场景&#xff1a; 主播通过手机&#xff0c;电脑等客户端&…

前端爬虫+可视化Demo

爬虫简介 可以把互联网比做成一张 “大网”&#xff0c;爬虫就是在这张大网上不断爬取信息的程序。 爬虫是请求网站并提取数据的自动化程序。 省流&#xff1a;Demo实现前置知识&#xff1a; JS 基础Node 基础 &#xff08;1&#xff09;爬虫基本工作流程&#xff1a; 向…

RK3568平台 USB基础知识

一.现实工作中USB实际例子 现象&#xff1a;把USB设备比如Android手机接到PC 右下角弹出"发现android phone"跳出一个对话框&#xff0c;提示你安装驱动程序 问1&#xff1a;USB设备插到电脑上去&#xff0c;接触到的对方设备是什么&#xff1f; 答1&#xff1a;…

yum 和 rpm

rpm说明 rpm -qa &#xff1a;列出所有已安装的软件包 [roothub ~] rpm -qa geoipupdate-2.5.0-1.el7.x86_64 ncurses-base-5.9-14.20130511.el7_4.noarch libndp-1.2-9.el7.x86_64 libfastjson-0.99.4-3.el7.x86_64 。。。 rpm -qf FILENAME &#xff1a;查找提供 FILENAME…