【AI Agent系列】【MetaGPT多智能体学习】7. 剖析BabyAGI:原生多智能体案例一探究竟(附简化版可运行代码)

本系列文章跟随《MetaGPT多智能体课程》(https://github.com/datawhalechina/hugging-multi-agent),深入理解并实践多智能体系统的开发。

本文为该课程的第四章(多智能体开发)的第五篇笔记。今天我们拆解一个之前提到过的多智能体案例 - BabyAGI,梳理出其实现原理,多智能体间的交互过程(数据流)。这是最原生的多智能体案例,没有用类似AutoGPT或MetaGPT等任何多智能体框架。从这个案例中我们能更好地理解智能体的底层实现原理。

系列笔记

  • 【AI Agent系列】【MetaGPT多智能体学习】0. 环境准备 - 升级MetaGPT 0.7.2版本及遇到的坑
  • 【AI Agent系列】【MetaGPT多智能体学习】1. 再理解 AI Agent - 经典案例和热门框架综述
  • 【AI Agent系列】【MetaGPT多智能体学习】2. 重温单智能体开发 - 深入源码,理解单智能体运行框架
  • 【AI Agent系列】【MetaGPT多智能体学习】3. 开发一个简单的多智能体系统,兼看MetaGPT多智能体运行机制
  • 【AI Agent系列】【MetaGPT多智能体学习】4. 基于MetaGPT的Team组件开发你的第一个智能体团队
  • 【AI Agent系列】【MetaGPT多智能体学习】5. 多智能体案例拆解 - 基于MetaGPT的智能体辩论(附完整代码)
  • 【AI Agent系列】【MetaGPT多智能体学习】6. 多智能体实战 - 基于MetaGPT实现游戏【你说我猜】(附完整代码)

文章目录

  • 系列笔记
  • 0. BabyAGI 简介
    • 0.1 运行流程
  • 1. BabyAGI 运行
    • 1.1 下载开源代码
    • 1.2 填写配置文件
    • 1.3 简化代码
    • 1.4 运行
  • 2. 运行过程及结果分析
    • 2.1 运行输出 - 详细解释
    • 2.2 问题及思考
  • 3. 总结

0. BabyAGI 简介

项目地址:https://github.com/yoheinakajima/babyagi/blob/main/README.md

该项目是一个 AI 支持的任务管理系统示例,它根据初始任务或目标,利用OpenAI创建任务列表,并对任务进行优先级排序和执行任务。其背后的主要思想是基于先前任务的结果和预定义的目标创建任务,然后使用 OpenAI 的能力根据目标创建新任务。这是原始的任务驱动的自驱Agent(2023 年 3 月 28 日)的简化版本。

0.1 运行流程

其运行流程如下:
(1)从任务列表中提取第一个任务
(2)将任务发送到执行代理(Execution Agent),该Agent使用LLM根据上下文完成任务。
(3)丰富结果并将其存储在向量数据库中
(4)创建新任务,并根据上一任务的目标和结果重新确定任务列表的优先级。
(5)重复以上步骤

其中涉及四个Agent,前三个Agent都利用了大模型的能力来进行任务规划和总结:

  • Execution Agent 接收目标和任务,调用大模型 LLM来生成任务结果。

  • Task Creation Agent 使用大模型LLM 根据目标和前一个任务的结果创建新任务。它的输入是:目标,前一个任务的结果,任务描述和当前任务列表。

  • Prioritization Agent 使用大模型LLM对任务列表进行重新排序。它接受一个参数:当前任务的 ID

  • Context Agent 使用向量存储和检索任务结果以获取上下文。

官方给出的数据流图如下:
在这里插入图片描述

1. BabyAGI 运行

要想更好地理解其原理和工作流程,首先需要将项目跑起来。

1.1 下载开源代码

git clone https://github.com/yoheinakajima/babyagi.git
pip install -r requirements.txt

1.2 填写配置文件

(1)复制一份 .env.example 文件,并重命名为 .env 文件

cp .env.example .env

(2)在 .env 文件中填入自己的 OpenAI key,OpenAI Base Url 等。我的运行不使用 weaviate 和 pinecone,因此不用填相关的config。

在这里插入图片描述

1.3 简化代码

因为我的运行不使用 weaviate 和 pinecone,也只是用 OpenAI 模型,所以将不用的代码删掉了,看起来清爽一点。然后,适配了一下 OpenAI API > 1.0 版本的接口。原代码使用的API < 1.0,太旧了。

#!/usr/bin/env python3
from dotenv import load_dotenv

# Load default environment variables (.env)
load_dotenv()

import os
import time
import logging
from collections import deque
from typing import Dict, List
import importlib
# import openai
import chromadb
import tiktoken as tiktoken
from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction
from chromadb.api.types import Documents, EmbeddingFunction, Embeddings
import re
from openai import OpenAI

# default opt out of chromadb telemetry.
from chromadb.config import Settings

client = chromadb.Client(Settings(anonymized_telemetry=False))

# Engine configuration

# Model: GPT, LLAMA, HUMAN, etc.
LLM_MODEL = os.getenv("LLM_MODEL", os.getenv("OPENAI_API_MODEL", "gpt-3.5-turbo")).lower()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
# API Keys
if not (LLM_MODEL.startswith("llama") or LLM_MODEL.startswith("human")):
    assert OPENAI_API_KEY, "\033[91m\033[1m" + "OPENAI_API_KEY environment variable is missing from .env" + "\033[0m\033[0m"

# Table config
RESULTS_STORE_NAME = os.getenv("RESULTS_STORE_NAME", os.getenv("TABLE_NAME", ""))
assert RESULTS_STORE_NAME, "\033[91m\033[1m" + "RESULTS_STORE_NAME environment variable is missing from .env" + "\033[0m\033[0m"

# Run configuration
INSTANCE_NAME = os.getenv("INSTANCE_NAME", os.getenv("BABY_NAME", "BabyAGI"))
COOPERATIVE_MODE = "none"
JOIN_EXISTING_OBJECTIVE = False

# Goal configuration
OBJECTIVE = os.getenv("OBJECTIVE", "")
INITIAL_TASK = os.getenv("INITIAL_TASK", os.getenv("FIRST_TASK", ""))

# Model configuration
OPENAI_TEMPERATURE = float(os.getenv("OPENAI_TEMPERATURE", 0.0))


# Extensions support begin

def can_import(module_name):
    try:
        importlib.import_module(module_name)
        return True
    except ImportError:
        return False


DOTENV_EXTENSIONS = os.getenv("DOTENV_EXTENSIONS", "").split(" ")

# Command line arguments extension
# Can override any of the above environment variables
ENABLE_COMMAND_LINE_ARGS = (
        os.getenv("ENABLE_COMMAND_LINE_ARGS", "false").lower() == "true"
)
if ENABLE_COMMAND_LINE_ARGS:
    if can_import("extensions.argparseext"):
        from extensions.argparseext import parse_arguments

        OBJECTIVE, INITIAL_TASK, LLM_MODEL, DOTENV_EXTENSIONS, INSTANCE_NAME, COOPERATIVE_MODE, JOIN_EXISTING_OBJECTIVE = parse_arguments()

# Human mode extension
# Gives human input to babyagi
if LLM_MODEL.startswith("human"):
    if can_import("extensions.human_mode"):
        from extensions.human_mode import user_input_await

# Load additional environment variables for enabled extensions
# TODO: This might override the following command line arguments as well:
#    OBJECTIVE, INITIAL_TASK, LLM_MODEL, INSTANCE_NAME, COOPERATIVE_MODE, JOIN_EXISTING_OBJECTIVE
if DOTENV_EXTENSIONS:
    if can_import("extensions.dotenvext"):
        from extensions.dotenvext import load_dotenv_extensions

        load_dotenv_extensions(DOTENV_EXTENSIONS)

# TODO: There's still work to be done here to enable people to get
# defaults from dotenv extensions, but also provide command line
# arguments to override them

# Extensions support end

print("\033[95m\033[1m" + "\n*****CONFIGURATION*****\n" + "\033[0m\033[0m")
print(f"Name  : {INSTANCE_NAME}")
print(f"Mode  : {'alone' if COOPERATIVE_MODE in ['n', 'none'] else 'local' if COOPERATIVE_MODE in ['l', 'local'] else 'distributed' if COOPERATIVE_MODE in ['d', 'distributed'] else 'undefined'}")
print(f"LLM   : {LLM_MODEL}")


# Check if we know what we are doing
assert OBJECTIVE, "\033[91m\033[1m" + "OBJECTIVE environment variable is missing from .env" + "\033[0m\033[0m"
assert INITIAL_TASK, "\033[91m\033[1m" + "INITIAL_TASK environment variable is missing from .env" + "\033[0m\033[0m"

print("\033[94m\033[1m" + "\n*****OBJECTIVE*****\n" + "\033[0m\033[0m")
print(f"{OBJECTIVE}")

if not JOIN_EXISTING_OBJECTIVE:
    print("\033[93m\033[1m" + "\nInitial task:" + "\033[0m\033[0m" + f" {INITIAL_TASK}")
else:
    print("\033[93m\033[1m" + f"\nJoining to help the objective" + "\033[0m\033[0m")


# Results storage using local ChromaDB
class DefaultResultsStorage:
    def __init__(self):
        logging.getLogger('chromadb').setLevel(logging.ERROR)
        # Create Chroma collection
        chroma_persist_dir = "chroma"
        chroma_client = chromadb.PersistentClient(
            settings=chromadb.config.Settings(
                persist_directory=chroma_persist_dir,
            )
        )

        metric = "cosine"
        embedding_function = OpenAIEmbeddingFunction(api_key=OPENAI_API_KEY)
        self.collection = chroma_client.get_or_create_collection(
            name=RESULTS_STORE_NAME,
            metadata={"hnsw:space": metric},
            embedding_function=embedding_function,
        )

    def add(self, task: Dict, result: str, result_id: str):

        # Break the function if LLM_MODEL starts with "human" (case-insensitive)
        if LLM_MODEL.startswith("human"):
            return
        # Continue with the rest of the function

        embeddings = llm_embed.embed(result) if LLM_MODEL.startswith("llama") else None
        if (
                len(self.collection.get(ids=[result_id], include=[])["ids"]) > 0
        ):  # Check if the result already exists
            self.collection.update(
                ids=result_id,
                embeddings=embeddings,
                documents=result,
                metadatas={"task": task["task_name"], "result": result},
            )
        else:
            self.collection.add(
                ids=result_id,
                embeddings=embeddings,
                documents=result,
                metadatas={"task": task["task_name"], "result": result},
            )

    def query(self, query: str, top_results_num: int) -> List[dict]:
        count: int = self.collection.count()
        if count == 0:
            return []
        results = self.collection.query(
            query_texts=query,
            n_results=min(top_results_num, count),
            include=["metadatas"]
        )
        return [item["task"] for item in results["metadatas"][0]]


# Initialize results storage
def use_chroma():
    print("\nUsing results storage: " + "\033[93m\033[1m" + "Chroma (Default)" + "\033[0m\033[0m")
    return DefaultResultsStorage()

results_storage = use_chroma()

# Task storage supporting only a single instance of BabyAGI
class SingleTaskListStorage:
    def __init__(self):
        self.tasks = deque([])
        self.task_id_counter = 0

    def append(self, task: Dict):
        self.tasks.append(task)

    def replace(self, tasks: List[Dict]):
        self.tasks = deque(tasks)

    def popleft(self):
        return self.tasks.popleft()

    def is_empty(self):
        return False if self.tasks else True

    def next_task_id(self):
        self.task_id_counter += 1
        return self.task_id_counter

    def get_task_names(self):
        return [t["task_name"] for t in self.tasks]


# Initialize tasks storage
tasks_storage = SingleTaskListStorage()
if COOPERATIVE_MODE in ['l', 'local']:
    if can_import("extensions.ray_tasks"):
        import sys
        from pathlib import Path

        sys.path.append(str(Path(__file__).resolve().parent))
        from extensions.ray_tasks import CooperativeTaskListStorage

        tasks_storage = CooperativeTaskListStorage(OBJECTIVE)
        print("\nReplacing tasks storage: " + "\033[93m\033[1m" + "Ray" + "\033[0m\033[0m")
elif COOPERATIVE_MODE in ['d', 'distributed']:
    pass


def limit_tokens_from_string(string: str, model: str, limit: int) -> str:
    """Limits the string to a number of tokens (estimated)."""

    try:
        encoding = tiktoken.encoding_for_model(model)
    except:
        encoding = tiktoken.encoding_for_model('gpt2')  # Fallback for others.

    encoded = encoding.encode(string)

    return encoding.decode(encoded[:limit])

client = OpenAI()

def openai_call(
    prompt: str,
    model: str = LLM_MODEL,
    temperature: float = OPENAI_TEMPERATURE,
    max_tokens: int = 100,
):
    # Use 4000 instead of the real limit (4097) to give a bit of wiggle room for the encoding of roles.
    trimmed_prompt = limit_tokens_from_string(prompt, model, 4000 - max_tokens)

    # Use chat completion API
    messages = [{"role": "system", "content": trimmed_prompt}]
    response = client.chat.completions.create(
        model=model,
        messages=messages,
        temperature=temperature,
        max_tokens=max_tokens,
        n=1,
        stop=None,
    )
    return response.choices[0].message.content.strip()
       


def task_creation_agent(
        objective: str, result: Dict, task_description: str, task_list: List[str]
):
    prompt = f"""
You are to use the result from an execution agent to create new tasks with the following objective: {objective}.
The last completed task has the result: \n{result["data"]}
This result was based on this task description: {task_description}.\n"""

    if task_list:
        prompt += f"These are incomplete tasks: {', '.join(task_list)}\n"
    prompt += "Based on the result, return a list of tasks to be completed in order to meet the objective. "
    if task_list:
        prompt += "These new tasks must not overlap with incomplete tasks. "

    prompt += """
Return one task per line in your response. The result must be a numbered list in the format:

#. First task
#. Second task

The number of each entry must be followed by a period. If your list is empty, write "There are no tasks to add at this time."
Unless your list is empty, do not include any headers before your numbered list or follow your numbered list with any other output. OUTPUT IN CHINESE"""

    print(f'\n*****TASK CREATION AGENT PROMPT****\n{prompt}\n')
    response = openai_call(prompt, max_tokens=2000)
    print(f'\n****TASK CREATION AGENT RESPONSE****\n{response}\n')
    new_tasks = response.split('\n')
    new_tasks_list = []
    for task_string in new_tasks:
        task_parts = task_string.strip().split(".", 1)
        if len(task_parts) == 2:
            task_id = ''.join(s for s in task_parts[0] if s.isnumeric())
            task_name = re.sub(r'[^\w\s_]+', '', task_parts[1]).strip()
            if task_name.strip() and task_id.isnumeric():
                new_tasks_list.append(task_name)
            # print('New task created: ' + task_name)

    out = [{"task_name": task_name} for task_name in new_tasks_list]
    return out


def prioritization_agent():
    task_names = tasks_storage.get_task_names()
    bullet_string = '\n'

    prompt = f"""
You are tasked with prioritizing the following tasks: {bullet_string + bullet_string.join(task_names)}
Consider the ultimate objective of your team: {OBJECTIVE}.
Tasks should be sorted from highest to lowest priority, where higher-priority tasks are those that act as pre-requisites or are more essential for meeting the objective.
Do not remove any tasks. Return the ranked tasks as a numbered list in the format:

#. First task
#. Second task

The entries must be consecutively numbered, starting with 1. The number of each entry must be followed by a period.
Do not include any headers before your ranked list or follow your list with any other output. OUTPUT IN CHINESE"""

    print(f'\n****TASK PRIORITIZATION AGENT PROMPT****\n{prompt}\n')
    response = openai_call(prompt, max_tokens=2000)
    print(f'\n****TASK PRIORITIZATION AGENT RESPONSE****\n{response}\n')
    if not response:
        print('Received empty response from priotritization agent. Keeping task list unchanged.')
        return
    new_tasks = response.split("\n") if "\n" in response else [response]
    new_tasks_list = []
    for task_string in new_tasks:
        task_parts = task_string.strip().split(".", 1)
        if len(task_parts) == 2:
            task_id = ''.join(s for s in task_parts[0] if s.isnumeric())
            task_name = re.sub(r'[^\w\s_]+', '', task_parts[1]).strip()
            if task_name.strip():
                new_tasks_list.append({"task_id": task_id, "task_name": task_name})

    return new_tasks_list


# Execute a task based on the objective and five previous tasks
def execution_agent(objective: str, task: str) -> str:
    """
    Executes a task based on the given objective and previous context.

    Args:
        objective (str): The objective or goal for the AI to perform the task.
        task (str): The task to be executed by the AI.

    Returns:
        str: The response generated by the AI for the given task.

    """

    context = context_agent(query=objective, top_results_num=5)
    # print("\n****RELEVANT CONTEXT****\n")
    # print(context)
    # print('')
    prompt = f'OUTPUT IN CHINESE. Perform one task based on the following objective: {objective}.\n'
    if context:
        prompt += 'Take into account these previously completed tasks:' + '\n'.join(context)
    prompt += f'\nYour task: {task}\nResponse:'
    return openai_call(prompt, max_tokens=2000)


# Get the top n completed tasks for the objective
def context_agent(query: str, top_results_num: int):
    """
    Retrieves context for a given query from an index of tasks.

    Args:
        query (str): The query or objective for retrieving context.
        top_results_num (int): The number of top results to retrieve.

    Returns:
        list: A list of tasks as context for the given query, sorted by relevance.

    """
    results = results_storage.query(query=query, top_results_num=top_results_num)
    print("****RESULTS****")
    print(results)
    return results


# Add the initial task if starting new objective
if not JOIN_EXISTING_OBJECTIVE:
    initial_task = {
        "task_id": tasks_storage.next_task_id(),
        "task_name": INITIAL_TASK
    }
    tasks_storage.append(initial_task)


def main():
    loop = True
    while loop:
        # As long as there are tasks in the storage...
        if not tasks_storage.is_empty():
            # Print the task list
            print("\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m\033[0m")
            for t in tasks_storage.get_task_names():
                print(" • " + str(t))

            # Step 1: Pull the first incomplete task
            task = tasks_storage.popleft()
            print("\033[92m\033[1m" + "\n*****NEXT TASK*****\n" + "\033[0m\033[0m")
            print(str(task["task_name"]))

            # Send to execution function to complete the task based on the context
            result = execution_agent(OBJECTIVE, str(task["task_name"]))
            print("\033[93m\033[1m" + "\n*****TASK RESULT*****\n" + "\033[0m\033[0m")
            print(result)

            # Step 2: Enrich result and store in the results storage
            # This is where you should enrich the result if needed
            enriched_result = {
                "data": result
            }
            # extract the actual result from the dictionary
            # since we don't do enrichment currently
            # vector = enriched_result["data"]

            result_id = f"result_{task['task_id']}"

            results_storage.add(task, result, result_id)

            # Step 3: Create new tasks and re-prioritize task list
            # only the main instance in cooperative mode does that
            new_tasks = task_creation_agent(
                OBJECTIVE,
                enriched_result,
                task["task_name"],
                tasks_storage.get_task_names(),
            )

            print('Adding new tasks to task_storage')
            for new_task in new_tasks:
                new_task.update({"task_id": tasks_storage.next_task_id()})
                print(str(new_task))
                tasks_storage.append(new_task)

            if not JOIN_EXISTING_OBJECTIVE:
                prioritized_tasks = prioritization_agent()
                if prioritized_tasks:
                    tasks_storage.replace(prioritized_tasks)

            # Sleep a bit before checking the task list again
            time.sleep(5)
        else:
            print('Done.')
            loop = False


if __name__ == "__main__":
    main()

1.4 运行

这时候点运行,应该就能运行成功了。但特别注意,不建议直接运行。由于大模型规划任务的能力具有很大的不确定性,很可能导致你的运行产生大量的任务,甚至任务会越来越多,不会停止。这样你的Key,或者你的Token消耗,就很大很大,甚至被封号或者直接破产了 !!!。我是debug运行方式,在每个函数里面都打了断点,这样可以随时停止。

2. 运行过程及结果分析

  • 给定Objective:周杰伦的生日是星期几。
  • 初始Task为:Develop a task list

2.1 运行输出 - 详细解释

(1)根据给定的 Objective 和 初始Task。刚开始 Task List 中只有一个初始Task。所以执行时 Next Task 就是这个初始Task。execution_agent 执行这个任务,运行结果为根据Objective产出一系列实现它的步骤任务,这里产生了4个。说实话,有点多了。

在这里插入图片描述

(2)根据 execution_agent 产生的结果和 Objective最终目标,task_creation_agent 创建了新的 Task 列表,添加到任务队列中。

在这里插入图片描述

(3)根据 task_creation_agent 产生的任务列表,prioritization_agent 根据任务列表和最终目标进行优先级排序。这里的排序就有点不靠谱了,大模型的能力还是不稳定

在这里插入图片描述
(4)下一次循环开始,从任务列表中取出第一个未完成任务,execution_agent 执行任务。上面错误的任务排序,导致了这里的大模型给出幻觉的答案…

在这里插入图片描述
(5)又是根据 execution_agent 产生的结果和 Objective最终目标,task_creation_agent 创建了新的 Task 列表,添加到任务队列中。

在这里插入图片描述
(6)根据 task_creation_agent 新产生的任务列表,prioritization_agent 根据新的任务列表和最终目标再次进行优先级排序。
在这里插入图片描述
(7)又是一轮循环,从任务列表中取出第一个未完成任务,execution_agent 执行任务。

在这里插入图片描述
(8)… 一直循环,直到任务队列没有未完成的任务。

看出来没?以这个进度,任务队列什么时候才能空?太浪费 Token 了。

2.2 问题及思考

从上面的运行过程也看出来了,这个多智能体案例太依赖大模型的能力了,就像我之前写的AutoGPT(【AI大模型应用开发】【AutoGPT系列】2. 手撕AutoGPT - 手把手教你用LangChain从0开始写一个简易版AutoGPT(0))一样。

目前看到的问题及一些思考:

(1)第一步产生的子任务太多 - 初始任务可以多写点 Prompt,限制下任务数量或质量
(2)优先级排序,有点不稳定,强依赖大模型的能力。或许需要引入人为排序?
(3)即使答案能够回答用户设置的Objective问题,但是只要任务里还有未完成的任务,它就会继续运行。- 需要添加结束的限制条件或判断。

例如下面这个例子,我给的 Objective 是 “历史上的今天发生了什么?” 。它直接给排了一大堆没必要的任务。

在这里插入图片描述

然后其实下面执行第一个任务后就得到了我想要的结果。

在这里插入图片描述

但它还在继续创建新的任务,我也不知道它什么时候会停止。

在这里插入图片描述
(4)最严重的问题,前面提到的,没有循环次数的限制,代码这样写,基本快等于 while True了,无限循环了。太危险了。

在这里插入图片描述
(5)还有一个没理解的点,为啥在 execution_agent 中要获取前面的任务?这里应该换成前面任务的执行结果才更合适吧?

在这里插入图片描述

3. 总结

本文我们学习了一个原生的多智能体案例 - BabyAGI,从环境搭建到运行,对每一步的输出都做了详细的说明,最后对运行过程中发现的一些问题也有一些自己的优化思考。

BabyAGI 其实就是利用大模型进行任务规划,任务排序,任务执行。这三个过程不断循环,再加上一点上下文信息以得到更高质量的结果,直到满足最终的目标。

三个主要过程,全部依赖大模型的能力,有点不可控,目前来说,个人认为落地比较难。咱们主要从中学一下它的实现思想吧。


站内文章一览

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/426610.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C++笔试题(选择+编程)

个人主页&#xff1a;Lei宝啊 愿所有美好如期而遇 选择题 请找出下面程序中有哪些错误&#xff08;&#xff09; int main() {int i 10;int j 1;const int *p1;//(1)int const *p2 &i; //(2)p2 &j;//(3)int *const p3 &i;//(4)*p3 20;//(5)*p2 30;//(6…

Leetcoder Day36| 动态规划part03

343. 整数拆分 给定一个正整数 n&#xff0c;将其拆分为至少两个正整数的和&#xff0c;并使这些整数的乘积最大化。 返回你可以获得的最大乘积。 示例 1: 输入: 2输出: 1解释: 2 1 1, 1 1 1。 示例 2: 输入: 10输出: 36解释: 10 3 3 4, 3 3 4 36。说明: 你可以假设 …

Excel 快速核对两列数据,找出不同

目录 一. 需求二. 条件格式&#xff0c;突出显示单元格规则 一. 需求 ⏹有如下图所示的两列&#xff0c;现在想根据C列的人名&#xff0c;找出B列中未出席的人名 二. 条件格式&#xff0c;突出显示单元格规则 先选中B3:B15&#xff0c;然后按住Ctrl键后&#xff0c;再接着选中…

游戏引擎分层简介

游戏引擎分层架构&#xff08;自上而下&#xff09; 工具层&#xff08;Tool Layer&#xff09; 在一个现代游戏引擎中&#xff0c;我们最先看到的可能不是复杂的代码&#xff0c;而是各种各样的编辑器&#xff0c;利用这些编辑器&#xff0c;我们可以制作设计关卡、角色、动画…

b站小土堆pytorch学习记录——P14 torchvision中的数据集使用

文章目录 一、前置知识如何查看torchvision的数据集 二、代码&#xff08;附注释&#xff09;及运行结果 一、前置知识 如何查看torchvision的数据集 &#xff08;1&#xff09;打开官网 https://pytorch.org/ pytorch官网 &#xff08;2&#xff09;打开torchvision 在Do…

设计模式:什么是设计模式?①

一、什么是设计模式&#xff1f; 1. 是一类程序设计思想 2. 是在大量实践过程中摸索总结出的标准经验提炼 3. 具有多样性和丰富性&#xff0c;不同情况应用的思想不同 二、设计模式的好处 1. 代码生产力和效率的提升 2. 让代码表现更为规整&#xff0c;简洁。阅读维护管理的成本…

机器学习-面经

经历了2023年的秋招&#xff0c;现在也已经入职半年了&#xff0c;空闲时间将面试中可能遇到的机器学习问题整理了一下&#xff0c;可能答案也会有错误的&#xff0c;希望大家能指出&#xff01;另外&#xff0c;不论是实习&#xff0c;还是校招&#xff0c;都祝福大家能够拿到…

黑科技工具盒源码 好用的手机工具盒iAPP源码

全新推出&#xff01;多功能工具箱&#xff1a;一款实用的手机工具集&#xff0c;提供丰富的免费小工具&#xff0c;操作简便。目前包含六项黑科技功能&#xff0c;分别为QQ云端、短信测压、Q绑查询、照妖镜、chatgpt、网页一键打包APP。工具箱体积小巧&#xff0c;不占内存&am…

网络编程:TCP机械臂,UDP文件传输

1.TCP机械臂测试 程序代码&#xff1a; 1 #include<myhead.h>2 #define SER_IP "192.168.126.112" //服务器IP3 #define SER_PORT 8888 //服务器端口号4 5 #define CLI_IP "192.168.126.121" //客户端IP6 #define CLI_PORT 9999 //…

Microsoft PyRIT能自动化完成AI红队的任务

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

web3时事粥报

比特币正成为更具有吸引力的通胀对冲工具 在通胀的宏观经济浪潮中&#xff0c;比特币正逐渐崭露头角&#xff0c;成为那些渴望多元化投资组合的投资者眼中的璀璨明星。Kooner 预测&#xff0c;2024年&#xff0c;各种宏观经济挑战可能进一步提升比特币、黄金和白银等资产的避险…

群体风暴之锤(War3地图编辑器)

文章目录 0、大致原理1、创建隐形单位2、新事件开端3、环境→新条件4、动作4.1、单位组4.1.1、圆范围内单位4.1.2、指定条件 4.2、对单位组内的所有单位释放风暴之锤 0、大致原理 真MK向目标点释放风暴之锤时选定&#xff08;以技能释放点为圆心&#xff0c;设定半径&#xff0…

【RT-DETR有效改进】结合SOTA思想利用双主干网络改进RT-DETR(全网独家创新,重磅更新)

一、本文介绍 本文给大家带来的改进机制是结合目前SOTAYOLOv9的思想利用双主干网络来改进RT-DETR&#xff08;本专栏目前发布以来改进最大的内容&#xff0c;同时本文内容为我个人一手整理全网独家首发 | 就连V9官方不支持的模型宽度和深度修改我都均已提供&#xff0c;本文内…

JUC并发编程 深入学习Java并发编程【上】

JUC并发编程&#xff0c;深入学习Java并发编程&#xff0c;与视频每一P对应&#xff0c;全系列6w字。 P1-5 为什么学特色预备知识 进程线程概念 进程&#xff1a; 一个程序被运行&#xff0c;从磁盘加载这个程序的代码到内存&#xff0c;就开起了一个进程。 进程可以视为程…

搜索旋转排序数组[中等]

优质博文IT-BLOG-CN 一、题目 整数数组nums按升序排列&#xff0c;数组中的值 互不相同 。 在传递给函数之前&#xff0c;nums在预先未知的某个下标k&#xff08;0 < k < nums.length&#xff09;上进行了 旋转&#xff0c;使数组变为[nums[k], nums[k1], ..., nums[n-…

C语言冒泡排序(高级版)

目录: 冒泡排序的原理 主函数 "冒泡排序函数" 比较函数 交换函数 最终输出 完整代码 冒泡排序的原理: 冒泡排序的原理是&#xff1a;从左到右&#xff0c;相邻元素进行比较。每次比较一轮&#xff0c;就会找到序列中最大的一个或最小的一个。这个数就会从序列的最右…

Qt 简约美观的加载动画 第九季

这次和大家分享6个非常清爽的加载动画. &#x1f60a; 效果如下 &#x1f60a; 一共三个文件 , 可以直接编译运行的呢 //main.cpp #include "LoadingAnimWidget.h" #include <QApplication> #include <QGridLayout> int main(int argc, char *argv[]) …

【机器人最短路径规划问题(栅格地图)】基于模拟退火算法求解

代码获取方式&#xff1a;QQ&#xff1a;491052175 或者 私聊博主获取 基于模拟退火算法求解机器人最短路径规划问题&#xff08;栅格地图&#xff09;的仿真结果 仿真结果&#xff1a; 初始解的路径规划图 收敛曲线&#xff1a; 模拟退火算法求解的路径规划图 结论&#xff…

DVWA靶场 Command Injection,高中低

Low 输入ip地址正常显示&#xff0c;尝试加入其他命令 127.0.0.1 & whoami 后面的whoami也执行了 Medium whoami也可以执行 好像&可应用&#xff0c;&&应该是被过滤 High &用不了&#xff0c;应该是过滤了吧 经过尝试&、|都无法用 查看源码后发现有…

GO逃逸分析

内存管理 内存管理主要包括两个动作&#xff1a;分配与释放。逃逸分析就是服务于内存分配的&#xff0c;而内存的释放由GC负责。 栈 在Go语言中&#xff0c;栈的内存是由编译器自动进行分配和释放的&#xff0c;栈区往往存储着函数参数、局部变量和调用函数帧&#xff0c;它…